Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{2^{20}\cdot27^3+30\cdot4^9\cdot9^4}{6^9\cdot4^5+12^{10}}=\frac{2^{20}\cdot\left[3^3\right]^3+2\cdot3\cdot5\cdot\left[2^2\right]^9\cdot\left[3^2\right]^4}{2^9\cdot3^9\cdot\left[2^2\right]^5+3^{10}\cdot\left[2^2\right]^{10}}=\frac{2^{20}\cdot3^{3\cdot3}+2\cdot3\cdot5\cdot2^{2\cdot9}\cdot3^{2\cdot4}}{2^9\cdot3^9\cdot2^{2\cdot5}+3^{10}\cdot2^{2\cdot10}}\)
\(=\frac{2^{20}\cdot3^9+2\cdot3\cdot5\cdot2^{18}\cdot3^8}{2^9\cdot3^9\cdot2^{10}+3^{10}\cdot2^{20}}=\frac{2^{20}\cdot3^9+2^{19}\cdot3^9\cdot5}{2^{19}\cdot3^9+3^{10}\cdot2^{20}}=\frac{2^{19}\cdot3^9\left[2+5\right]}{2^{19}\cdot3^9\left[1+3\cdot2\right]}=\frac{2+5}{1+6}=\frac{7}{7}=1\)
\(\dfrac{2^{20}.27^3+30.4^9.9^4}{6^9.4^5+12^{10}}=\dfrac{2^{20}.3^9+3.2.5.2^{18}.3^8}{2^9.3^9+2^{10}+2^{20}.3^{10}}\)
\(=\dfrac{2^{19}.3^9.\left(2+5\right)}{2^9.3^9.\left(1+2^{11}.3\right)+2^{10}}=\dfrac{2^{10}.\left(2+5\right)}{1+2^{10}.\left(2.3+1\right)}\)
\(=\dfrac{2^{10}.7}{2^{10}.7+1}=\dfrac{7168}{7169}\)
Chúc bạn học tốt!!!
\(\dfrac{2^{20}.27^3+30.4^9.9^4}{6^9.4^5+12^{10}}=\dfrac{2^{20}.3^9+2.3.5.2^{18}.3^8}{2^9.3^9+2^{20}.3^{10}}=\dfrac{2^{20}.3^9+5.2^{19}.3^9}{2^9.3^9+2^{20}.3^{10}}=\dfrac{2^9.3^9\left(2^{11}+5.2^{10}\right)}{2^9.3^9\left(1+2^{11}.3\right)}\)
\(\dfrac{2^{11}+5.2^{10}}{1+2^{11}.3}\)
tới bc này chiu :))
\(=\dfrac{2^{19}\cdot3^9+2^{18}\cdot3^9\cdot5}{2^{19}\cdot3^9+2^{20}\cdot3^{10}}=\dfrac{2^{18}\cdot3^9\left(5+2\right)}{2^{19}\cdot3^9\left(1+2\cdot3\right)}=\dfrac{1}{2}\)
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\frac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.2^2\right)^{10}}\)
\(=\frac{2^{19}.3^9+5.2^{18}.3^9}{2^{19}.3^9+3^{10}.2^{20}}\)
\(=\frac{2^{18}.3^9\left(2+5\right)}{2^{19}.3^9\left(1+3.2\right)}\)
\(=\frac{7}{2.7}=\frac{1}{2}\)
\(\dfrac{2^{19}+27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\dfrac{2^{19}+\left(3^3\right)^3+5.3.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.4\right)^{10}}\)
\(=\dfrac{2^{19}.3^9+3.5.2^{18}.3^8}{3^9.2^9.2^{10}+3^{10}.4^{10}}\)
\(=\dfrac{2^{19}.3^9+5.2^{18}.3^9}{3^9.2^{19}+3^{10}.\left(2^2\right)^{10}}\)
\(=\dfrac{2^{18}.3^9.\left(2.5\right)}{3^9.2^{19}+3^{10}.2^{20}}\)
\(=\dfrac{2^{18}.3^9.7}{2^{19}.3^9.\left(1+3.2\right)}\)
\(=\dfrac{7}{2\left(1+6\right)}\)
\(=\dfrac{7}{2.7}\)
\(=\dfrac{1}{2}\)
a) \(5^{20}và2550^{10}\)
\(5^{20}=\left(5^2\right)^{10}=25^{10}< 2550^{10}\)
=> \(5^{20}< 2550^{10}\)
b) \(999^{10}và999999^5\)
\(999^{10}=\left(999^2\right)^5=1998^5< 999999^5\)
=> \(999^{10}< 999999^5\)
c) \(\left(\dfrac{-1^{300}}{5}\right)và\left(\dfrac{-1^{500}}{3}\right)\)
\(\left(\dfrac{-1^{300}}{5}\right)=\dfrac{-1}{5}\)
\(\left(\dfrac{-1^{500}}{3}\right)=\dfrac{-1}{3}\)
\(\dfrac{-1}{5}=\dfrac{-3}{15}\)
\(\dfrac{-1}{3}=\dfrac{-5}{15}\)
=> \(\dfrac{-3}{15}>\dfrac{-5}{15}\)
=> \(\left(\dfrac{-1^{300}}{5}\right)>\left(\dfrac{-1^{500}}{3}\right)\)
\(\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\\ =\dfrac{2^{19}.3^9+5.2^{18}.3^9}{2^9.3^9+2^{20}.3^{10}}\\ =\dfrac{2^{18}.3^9\left(2+5\right)}{2^9.3^9\left(2^{11}.3+1\right)}\\ =\dfrac{2^9.7}{2^9.12+1}=\dfrac{7}{13}\)
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}=\frac{2^{19}.3^9+5.2^{18}.3^9}{2^{10}.6^9+2^{10}.6^{10}}=\frac{2^{18}.3^9.\left(2+5\right)}{2^{10}.6^9\left(1+6\right)}=\frac{2^{18}.3^9.7}{2^{10}.6^9.7}=2^8.\left(\frac{1}{2}\right)^9=2^8.\frac{9}{2^9}=\frac{1}{2}.9=\frac{9}{2}\)Vậy C=\(\frac{9}{2}\)
\(\dfrac{2^{20}\cdot27^3+30\cdot4^9\cdot9^4}{6^9\cdot4^5+12^{10}}\\ =\dfrac{2^{20}\cdot\left(3^3\right)^3+\left(2\cdot3\cdot5\right)\cdot\left(2^2\right)^9\cdot\left(3^2\right)^4}{\left(2\cdot3\right)^9\cdot\left(2^2\right)^5+\left(3\cdot4\right)^{10}}\\ =\dfrac{2^{20}\cdot3^9+2\cdot3\cdot5\cdot2^{18}\cdot3^8}{2^9\cdot3^9\cdot2^{10}+3^{10}\cdot4^{10}}\\ =\dfrac{2^{20}\cdot3^9+2^{19}\cdot3^9\cdot5}{2^{19}\cdot3^9+3^{10}\cdot2^{20}}\\ =\dfrac{2^{19}\cdot3^9\left(2+5\right)}{2^{19}\cdot3^9\left(1+2\cdot3\right)}\\ =\dfrac{2^{19}\cdot3^9\cdot7}{2^{19}\cdot3^9\cdot7}\\ =1\)