Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)=\(\dfrac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{6^9.2^{10}+6^{10}.2^{10}}\)
=\(\dfrac{2^{19}.3^9+2^{18}.3^9.5}{6^9.2^{10}.\left(1+6\right)}\)=\(\dfrac{2^{18}.3^9.\left(2+5\right)}{6^9.2^{10}.7}\)=\(\dfrac{2^{18}.3^9}{6^9.2^{10}}=\dfrac{2^{10}.2^8.3^9}{2^9.3^9.2^{10}}=\dfrac{2^8}{2^8.2}=\dfrac{1}{2}\)
b, \(\dfrac{\left(\dfrac{-1}{2}\right)^3-\left(\dfrac{3}{4}\right)^3.\left(-2\right)^2}{2.\left(-1\right)^5+\left(\dfrac{3}{4}\right)^2-\dfrac{3}{8}}=\dfrac{\dfrac{-1}{8}-\dfrac{27}{64}.4}{-2+\dfrac{9}{16}-\dfrac{3}{8}}=\dfrac{\dfrac{-1}{8}-\dfrac{27}{16}}{\dfrac{-23}{16}-\dfrac{3}{8}}=\dfrac{\dfrac{-29}{16}}{\dfrac{-29}{16}}=1\)
kết quả cuối cùng =1/2
/ phần nha bạn
nếu đúng thì tick cho mk nha
=\(\dfrac{2^{19}.27^3-15.\left(-4\right)^9.9^4}{6^9.2^{10}+\left(-12\right)^{10}}\)
=\(\dfrac{2^{19}.3^9-2^{18}.3^9.5}{6^9.2^{10}+6^{10}.2^{10}}\)
=\(\dfrac{2^{18}.3^9\left(2-2.5\right)}{6^9.2^{10}\left(1+6\right)}\)
=\(\dfrac{2^{18}.3^9.\left(-8\right)}{3^9.2^{19}.7}\)
=\(\dfrac{-8}{14}=\dfrac{-4}{7}\)
bạn làm sai rùi kết quả là \(\dfrac{1}{2}\) mình hỏi thầy rùi
\(=\dfrac{2^{19}.\left(3^3\right)^3-3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.2^2\right)^{10}}=\dfrac{2^{19}.3^9-5.2^{18}.3^9}{2^{19}.3^9+2^{20}.3^{10}}=\dfrac{2^{18}.3^9\left(2-5\right)}{2^{19}.3^9\left(1+6\right)}=\dfrac{-3}{2.7}=-\dfrac{3}{14}\)
A = \(\frac{2}{3}+\frac{5}{6}:6-\frac{1}{8}.\left(-3\right)^2\)
A = \(\frac{2}{3}+\frac{5}{6}.\frac{1}{6}-\frac{1}{8}.9\)
A = \(\frac{2}{3}+\frac{5}{36}-\frac{9}{8}\)
A =\(\frac{-23}{72}\)
\(\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\\ =\dfrac{2^{19}.3^9+5.2^{18}.3^9}{2^9.3^9+2^{20}.3^{10}}\\ =\dfrac{2^{18}.3^9\left(2+5\right)}{2^9.3^9\left(2^{11}.3+1\right)}\\ =\dfrac{2^9.7}{2^9.12+1}=\dfrac{7}{13}\)
Lời giải:
1.
$(\frac{5}{6})^{10}.(\frac{3}{10})^{10}=(\frac{5}{6}.\frac{3}{10})^{10}=(\frac{1}{4})^{10}$
$=\frac{1}{4^{10}}$
2.
$(\frac{4}{7})^{19}: (\frac{-12}{35})^{19}=(\frac{4}{7}: \frac{-12}{35})^{19}=(\frac{-5}{3})^{19}$
3.
$(\frac{-3}{7})^7:\frac{-3}{5}=\frac{(-3)^7}{7^7}.\frac{5}{-3}=\frac{5.(-3)^6}{7^7}=\frac{5.3^6}{7^7}$
\(\dfrac{2^{19}+27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\dfrac{2^{19}+\left(3^3\right)^3+5.3.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.4\right)^{10}}\)
\(=\dfrac{2^{19}.3^9+3.5.2^{18}.3^8}{3^9.2^9.2^{10}+3^{10}.4^{10}}\)
\(=\dfrac{2^{19}.3^9+5.2^{18}.3^9}{3^9.2^{19}+3^{10}.\left(2^2\right)^{10}}\)
\(=\dfrac{2^{18}.3^9.\left(2.5\right)}{3^9.2^{19}+3^{10}.2^{20}}\)
\(=\dfrac{2^{18}.3^9.7}{2^{19}.3^9.\left(1+3.2\right)}\)
\(=\dfrac{7}{2\left(1+6\right)}\)
\(=\dfrac{7}{2.7}\)
\(=\dfrac{1}{2}\)
a) \(5^{20}và2550^{10}\)
\(5^{20}=\left(5^2\right)^{10}=25^{10}< 2550^{10}\)
=> \(5^{20}< 2550^{10}\)
b) \(999^{10}và999999^5\)
\(999^{10}=\left(999^2\right)^5=1998^5< 999999^5\)
=> \(999^{10}< 999999^5\)
c) \(\left(\dfrac{-1^{300}}{5}\right)và\left(\dfrac{-1^{500}}{3}\right)\)
\(\left(\dfrac{-1^{300}}{5}\right)=\dfrac{-1}{5}\)
\(\left(\dfrac{-1^{500}}{3}\right)=\dfrac{-1}{3}\)
\(\dfrac{-1}{5}=\dfrac{-3}{15}\)
\(\dfrac{-1}{3}=\dfrac{-5}{15}\)
=> \(\dfrac{-3}{15}>\dfrac{-5}{15}\)
=> \(\left(\dfrac{-1^{300}}{5}\right)>\left(\dfrac{-1^{500}}{3}\right)\)
thank you very much