Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=(1-2-3+4)+(5-6-7+8)+...+(2017-2018-2019+2020)+2021-2022-2023
=0+0+...+0-1-2023
=-2024
P=[(1-2)+(-3+4)+(5-6)+(-7+8)+...+(993-994)+(-995+996)]+997
P=[(-1)+1+(-1)+1+...+(-1)+1+(-1)+1]+997
P= 0 +0 +...+ 0 +997
P=997
a:
Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)
Từ 1 đến 2025 sẽ có:
\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)
Ta có: 1-3=5-7=...=2021-2023=-2
=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này
=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)
b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)
Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)
Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4
=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này
=>\(S=506\cdot\left(-4\right)=-2024\)
2) \(B=\left(1-2-3+4\right)+\left(5-6-7+8\right)+...+\left(1989-1990-1991+1992\right)+1993-1994\)
\(=0+0+...+0+1993-1994=0+1993-1994=-1\)
Sửa đề: 1-2-3+4+5-6-7+8+...-2018-2019+2020+2021-2022-2023
=(1-2-3+4)+(5-6-7+8)+...+(2017-2018-2019+2020)+(2021-2022-2023)
=0+0+...+0+(-1-2023)
=-2024
Lời giải:
$A=(-1-2+3+4)+(-5-6+7+8)+(-9-10+11+12)+...+(-2021-2022+2023+2024)-2024$
$=\underbrace{4+4+...+4}_{506}-2024$
$=4.506-2024=0$
S = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... + (2017 + 2018 - 2019 - 2020) + (2021 - 2022 + 2023) (nhóm các số hạng vào 505 nhóm, mỗi nhóm có 4 số hạng, thừa ra 3 số hạng nhóm vào 1 nhóm là 506 nhóm)
S = -4 + (-4) + ... + (-4) + 2022
S = -4 x 505 + 2022
S = -2022 + 2022
S = 0
S = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... + (2017 + 2018 - 2019 - 2020) + (2021 - 2022 + 2023) (nhóm các số hạng vào 505 nhóm, mỗi nhóm có 4 số hạng, thừa ra 3 số hạng nhóm vào 1 nhóm là 506 nhóm)
S = -4 + (-4) + ... + (-4) + 2022
S = -4 x 505 + 2022
S = -2022 + 2022
S = 0
\(A=1-3+5-7+......-2019+2021-2023\)
\(A=\left(1-3\right)+\left(5-7\right)+....+\left(2021-2023\right)\)
\(A=-2+\left(-2\right)+....+\left(-2\right)\left(506 cặp\right)\)
\(A=-2.506\)
\(A=-1012\)
*) A=(1-3)+(5-7)+....+(2021-2023)
<=> A=-2+(-2)+...+(-2)
Dãy A có (2023-1):2+1=1012 số số hạng
=> Có 506 số (-2)
=> A=(-2).506=-1012
A=(1-2)+(3-4)+...+(2021-2022)+2023
=2023-(1+1+1+...+1)
=2023-1011
=1012
222222222222222222222222222222222222222222222222222222222222
C = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 2021 - 2022 - 2023 + 2024
Xét dãy số 1; 2; 3; 4; 5; 6;...; 2023; 2024
Dãy số trên là dãy số cách đều với khoảng cách là 2 - 1 = 1
Số số hạng của dãy số trên là: (2024 - 1) : 1 + 1 = 2024
Nhóm 4 số hạng liên tiếp của C thành một nhóm
Vì 2024 : 4 = 506
Khi đó ta có C là tổng của 506 nhóm
C = (1 - 2 - 3 + 4) + (5 - 6 - 7+ 8) +... + (2021 - 2022 - 2023 + 2024)
C = 0 + 0 + 0 + ... + 0
C = 0
Lời giải:
$C=(1-2-3+4)+(5-6-7+8)+....+(2021-2022-2023+2024)$
$=0+0+...+0=0$
------------------------------
$D=(1-3)+(5-7)+....+(2017-2019)+2021$
$=(-2)+(-2)+....+(-2)+2021$
Số lần xuất hiện của $-2$ là: $[(2019-1):2+1]:2=505$
$D=(-2).505+2021=1011$