Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=202\left(200^{-2}-1\right)\left(199^{-2}-1\right)\left(198^{-2}-1\right)...\left(101^{-2}-1\right)\)
\(=202\left(\frac{1}{200^2}-1\right)\left(\frac{1}{199^2}-1\right)\left(\frac{1}{198^2}-1\right)...\left(\frac{1}{101^2}-1\right)\)
\(=-202\left(1-\frac{1}{200^2}\right)\left(1-\frac{1}{199^2}\right)\left(1-\frac{1}{198^2}\right)...\left(1-\frac{1}{101^2}\right)\)
\(=-202\left(\frac{199.201}{200^2}\right).\left(\frac{198.200}{199^2}\right).\left(\frac{197.199}{198^2}\right)...\left(\frac{102.100}{101^2}\right)\)
\(=-202.\frac{199.201.198.200.197.199...100.102}{200^2.199^2.198^2...101^2}\)
\(=-202.\frac{\left(199.198.197...100\right)\left(201.200.199...102\right)}{\left(200.199.198...101\right)\left(200.199.198...101\right)}\)
\(=-202.\frac{1.201}{2.101}=-202.\frac{201}{202}=-201\)
A=(3x+7)(2x+3)-(3x-5)(2x+11) =6x2+9x+14x+21-6x2-33x+10x+55 =(6x2-6x2)+(9x+14x-33x+10x)+(21+55) =76
\(A=\left(3x+7\right)\left(2x+3\right)-\left(3x-5\right)\left(2x+11\right)\)
\(\Leftrightarrow A=6x^2+14x+9x+21-\left(6x^2-10x+33x-55\right)\)
\(\Leftrightarrow A=6x^2+23x+21-\left(6x^2+23x-55\right)\)
\(\Leftrightarrow A=6x^2+23x+21-6x^2-23x+55\)
\(\Leftrightarrow A=76\)
\(B=\left(x+1\right)\left(x^2-x-1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(\Leftrightarrow B=\left(x+1\right)x^2-x\left(x+1\right)-\left(x+1\right)-\left(x-1\right)x^2-\left(x-1\right)x-\left(x-1\right)\)
\(\Leftrightarrow B=x^3+x^2-x^2-x-x-1-x^3+x^2-x^2+x-x+1\)
\(\Leftrightarrow B=\left(x^3-x^3\right)+\left(x^2-x^2+x^2-x^2\right)+\left(x-x-x-x\right)+\left(1-1\right)\)
\(\Leftrightarrow B=-2x\)
\(A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{2017^2}\right)\)
\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{2016.2018}{2017^2}\)
\(=\frac{2.3^2.4^2.5^2...2016^2.2017.2018}{2^2.3^2.4^2.5^2...2017^2}\)
\(=\frac{2018}{2.2017}=\frac{1009}{2017}\)
B = -1/2 . (-2/3) . ....... . (-2006/2007)
= 1/2 . 2/3 . ....... . 2006/2007 ( vì số phân số là số chẵn )
= 1.2.3. ..... .2006/2.3.4. ...... .2007
= 1/2007
Tk mk nha
Ta có :
\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2007}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2006}{2007}\)
\(B=\frac{1.2.3.....2006}{2.3.4.....2007}\)
\(B=\frac{1}{2007}\)
Vậy \(B=\frac{1}{2007}\)
Chúc bạn học tốt ~
Ta có: \(1-\frac{2}{n.\left(n+1\right)}\)
=\(\frac{n.\left(n+1\right)-2}{n\left(n+1\right)}\)
=\(\frac{n^2+n-2}{n.\left(n+1\right)}\)
=\(\frac{\left(n^2-1\right)+\left(n-1\right)}{n.\left(n+1\right)}\)
=\(\frac{\left(n-1\right).\left(n+1\right)+\left(n-1\right)}{n.\left(n+1\right)}\)
=\(\frac{\left(n-1\right).\left(n+1+1\right)}{n.\left(n+1\right)}\)
=\(\frac{\left(n-1\right).\left(n+2\right)}{n.\left(n+1\right)}\)
=>\(1-\frac{2}{n.\left(n+1\right)}=\frac{\left(n-1\right).\left(n+2\right)}{n.\left(n+1\right)}\left(1\right)\)
Lại có: \(M=\left(1-\frac{2}{2.3}\right).\left(1-\frac{2}{3.4}\right).\left(1-\frac{2}{4.5}\right)....\left(1-\frac{2}{99.100}\right)\)
=> \(M=\left(1-\frac{2}{2.\left(2+1\right)}\right).\left(1-\frac{2}{3.\left(3+1\right)}\right).\left(1-\frac{2}{4.\left(4+1\right)}\right)....\left(1-\frac{2}{99.\left(99+1\right)}\right)\left(2\right)\)
Thay (1) vào (2) ta được:
\(M=\frac{\left(2-1\right).\left(2+2\right)}{2.\left(2+1\right)}.\frac{\left(3-1\right).\left(3+2\right)}{3.\left(3+1\right)}.\frac{\left(4-1\right).\left(4+2\right)}{4.\left(4+1\right)}...\frac{\left(99-1\right).\left(99+2\right)}{99.\left(99+1\right)}\)
=> \(M=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}....\frac{98.101}{99.100}\)
=> \(M=\frac{1.4.2.5.3.6....98.101}{2.3.3.4.4.5....99.100}\)
=> \(M=\frac{\left(1.2.3....98\right).\left(4.5.6....101\right)}{\left(2.3.4....99\right).\left(3.4.5....100\right)}\)
=> \(M=\frac{1.101}{99.3}\)
=> \(M=\frac{101}{297}\)
Vậy \(M=\frac{101}{297}\)
Áp dụng tính chất a2 - b2 = a2 - ab + ab - b2 = a(a - b) + b(a - b) = (a + b)(a - b)
B =\(\left(200^{-2}-1\right)\left(199^{-2}-1\right)...\left(101^{-2}-1\right)=\left(\frac{1}{200^2}-1\right)\left(\frac{1}{199^2}-1\right)...\left(\frac{1}{101^2}-1\right)\)
\(=\frac{1-200^2}{200^2}.\frac{1-199^2}{199^2}...\frac{1-101^2}{101^2}=\frac{1^2-200^2}{200^2}.\frac{1^2-199^2}{199^2}....\frac{1^2-101^2}{101^2}\)
\(=\frac{\left(1-200\right)\left(1+200\right)}{200^2}.\frac{\left(1-199\right)\left(1+199\right)}{199^2}...\frac{\left(1-101\right)\left(1+101\right)}{101^2}\)
\(=-\left(\frac{199.201}{200^2}.\frac{198.200}{199^2}...\frac{100.102}{101^2}\right)=-\frac{199.201.198.200..100.102}{200.200.199.199...101.101}\)
\(=-\frac{\left(199.198...100\right)\left(201.200...102\right)}{\left(200.199...101\right).\left(200.199...101\right)}=-\frac{100.201}{200.101}=-\frac{201}{202}\)
Bài giải
\(B=\left(200^{-2}-1\right)\left(199^{-2}-1\right)\left(198^{-2}-1\right)...\left(101^{-2}-1\right)\)
\(B=\left(\frac{1}{200^2}-1\right)\left(\frac{1}{199^2}-1\right)\left(\frac{1}{198^2}-1\right)...\left(\frac{1}{101^2}-1\right)\)
\(B=\left[\left(\frac{1}{200}\right)^2-1^2\right]\left[\left(\frac{1}{199}\right)^2-1^2\right]\left[\left(\frac{1}{198}\right)^2-1^2\right]...\left[\left(\frac{1}{101}\right)^2-1^2\right]\)
\(B=\left(\frac{1}{200}+1\right)\left(\frac{1}{200}-1\right)\left(\frac{1}{199}+1\right) \left(\frac{1}{199}-1\right)..\left(\frac{1}{101}-1\right)\left(\frac{1}{101}+1\right)\)
\(B=\frac{201}{200}\cdot\frac{-199}{200}\cdot\frac{200}{199}\cdot\frac{-198}{199}\cdot...\cdot\frac{-100}{101}\cdot\frac{102}{101}\)
\(B=\frac{201\cdot\left(-199\right)\cdot200\cdot\left(-198\right)\cdot...\cdot\left(-100\right)\cdot102}{200\cdot200\cdot199\cdot199\cdot...\cdot101\cdot101}=\frac{100\cdot201}{200\cdot101}=\frac{201}{202}\)