\(\left(200^{-2}-1\right).....\left(101^{-2}-1\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

Áp dụng tính chất a2 - b2 = a2 - ab + ab - b2 = a(a - b) + b(a - b) = (a + b)(a - b)

B =\(\left(200^{-2}-1\right)\left(199^{-2}-1\right)...\left(101^{-2}-1\right)=\left(\frac{1}{200^2}-1\right)\left(\frac{1}{199^2}-1\right)...\left(\frac{1}{101^2}-1\right)\)

\(=\frac{1-200^2}{200^2}.\frac{1-199^2}{199^2}...\frac{1-101^2}{101^2}=\frac{1^2-200^2}{200^2}.\frac{1^2-199^2}{199^2}....\frac{1^2-101^2}{101^2}\)

\(=\frac{\left(1-200\right)\left(1+200\right)}{200^2}.\frac{\left(1-199\right)\left(1+199\right)}{199^2}...\frac{\left(1-101\right)\left(1+101\right)}{101^2}\)

\(=-\left(\frac{199.201}{200^2}.\frac{198.200}{199^2}...\frac{100.102}{101^2}\right)=-\frac{199.201.198.200..100.102}{200.200.199.199...101.101}\)

\(=-\frac{\left(199.198...100\right)\left(201.200...102\right)}{\left(200.199...101\right).\left(200.199...101\right)}=-\frac{100.201}{200.101}=-\frac{201}{202}\)

12 tháng 8 2020

                                          Bài giải

\(B=\left(200^{-2}-1\right)\left(199^{-2}-1\right)\left(198^{-2}-1\right)...\left(101^{-2}-1\right)\)

\(B=\left(\frac{1}{200^2}-1\right)\left(\frac{1}{199^2}-1\right)\left(\frac{1}{198^2}-1\right)...\left(\frac{1}{101^2}-1\right)\)

\(B=\left[\left(\frac{1}{200}\right)^2-1^2\right]\left[\left(\frac{1}{199}\right)^2-1^2\right]\left[\left(\frac{1}{198}\right)^2-1^2\right]...\left[\left(\frac{1}{101}\right)^2-1^2\right]\)

\(B=\left(\frac{1}{200}+1\right)\left(\frac{1}{200}-1\right)\left(\frac{1}{199}+1\right) \left(\frac{1}{199}-1\right)..\left(\frac{1}{101}-1\right)\left(\frac{1}{101}+1\right)\)

\(B=\frac{201}{200}\cdot\frac{-199}{200}\cdot\frac{200}{199}\cdot\frac{-198}{199}\cdot...\cdot\frac{-100}{101}\cdot\frac{102}{101}\)

\(B=\frac{201\cdot\left(-199\right)\cdot200\cdot\left(-198\right)\cdot...\cdot\left(-100\right)\cdot102}{200\cdot200\cdot199\cdot199\cdot...\cdot101\cdot101}=\frac{100\cdot201}{200\cdot101}=\frac{201}{202}\)

1 tháng 9 2020

\(A=202\left(200^{-2}-1\right)\left(199^{-2}-1\right)\left(198^{-2}-1\right)...\left(101^{-2}-1\right)\)

\(=202\left(\frac{1}{200^2}-1\right)\left(\frac{1}{199^2}-1\right)\left(\frac{1}{198^2}-1\right)...\left(\frac{1}{101^2}-1\right)\)

\(=-202\left(1-\frac{1}{200^2}\right)\left(1-\frac{1}{199^2}\right)\left(1-\frac{1}{198^2}\right)...\left(1-\frac{1}{101^2}\right)\)

\(=-202\left(\frac{199.201}{200^2}\right).\left(\frac{198.200}{199^2}\right).\left(\frac{197.199}{198^2}\right)...\left(\frac{102.100}{101^2}\right)\)

\(=-202.\frac{199.201.198.200.197.199...100.102}{200^2.199^2.198^2...101^2}\)

\(=-202.\frac{\left(199.198.197...100\right)\left(201.200.199...102\right)}{\left(200.199.198...101\right)\left(200.199.198...101\right)}\)

\(=-202.\frac{1.201}{2.101}=-202.\frac{201}{202}=-201\)

19 tháng 9 2016

a ) \(3-4.\left|5-6x\right|=7\)

\(\Leftrightarrow4.\left|5-6x\right|=-4\)

\(\Leftrightarrow\left|5-6x\right|=-1\)

\(\Leftrightarrow\) Không thõa mãn ( vì \(x\ge0\) )

19 tháng 9 2016

b) Do \(\left|x+2\right|\ge0;\left|x+\frac{3}{5}\right|\ge0;\left|x+\frac{1}{2}\right|\ge0\)

=> \(4x\ge0\)

=> \(x\ge0\)

Lúc này ta có: \(\left(x+2\right)+\left(x+\frac{3}{5}\right)+\left(x+\frac{1}{2}\right)=4x\)

=> \(\left(x+x+x\right)+\left(2+\frac{3}{5}+\frac{1}{2}\right)=4x\)

=> \(3x+\frac{31}{10}=4x\)

=> \(4x-3x=\frac{31}{10}\)

=> \(x=\frac{31}{10}\)

Vậy \(x=\frac{31}{10}\)

c) Do \(\left|x+\frac{1}{101}\right|\ge0;\left|x+\frac{2}{101}\right|\ge0;\left|x+\frac{3}{101}\right|\ge0;...;\left|x+\frac{100}{101}\right|\ge0\)

=> \(101x\ge0\)

=> \(x\ge0\)

Lúc này ta có: \(\left(x+\frac{1}{101}\right)+\left(x+\frac{2}{101}\right)+\left(x+\frac{3}{101}\right)+...+\left(x+\frac{100}{101}\right)=101x\)

=> \(\left(x+x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+\frac{3}{101}+...+\frac{100}{101}\right)=101x\)

               100 số x

=> \(100x+\frac{\left(1+100\right).100:2}{101}=101x\)

=> \(\frac{101.50}{101}=101x-100x\)

=> \(x=50\)

Vậy x = 50

22 tháng 8 2017
bài làm
A=1.2.3+2.3.4+3.4.5+...+98.99.100
4A=1.2.3.4+2.3.4.4+3.4.5.4+...+98.99.100.4
4A=1.2.3.(4-0)+2.3.4.(5-1)+...+98.99.100.(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-...-97.98.99.100+98.99.100.101
4A=98.99.100.101
4A=97990200
A=979902004979902004
A=24497550
22 tháng 8 2017

a, Vào câu hỏi tương tự nhé

b, Vì \(\hept{\begin{cases}\left|x+3\right|\ge0\\\left|x+1\right|\ge0\end{cases}\Rightarrow\left|x+3\right|+\left|x+1\right|\ge0\Rightarrow3x\ge0\Rightarrow x\ge0}\)

=> x+3+x+1=3x

=> 2x+4=3x

=>x=4

c, \(\left|x-4\right|+\left|x-10\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|=\left|4-x\right|+\left|10-x\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|\)

Có \(\left|4-x\right|\ge4-x;\left|10-x\right|\ge10-x;\left|x+990\right|\ge x+990;\left|x+1000\right|\ge x+1000\)

=>\(\left|4-x\right|+\left|10-x\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|\)

=> \(2005\ge4-x+10-x+x+990+x+1000+\left|x+101\right|\)

=> \(2005\ge\left|x+101\right|+2004\)

=> \(\left|x+101\right|\le1\)

=> \(x+101\in\left\{-1;0;1\right\}\Rightarrow x\in\left\{-102;-101;-100\right\}\)

d, tương tự b