K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu bằng xảy ra \(\Leftrightarrow a=b=c\)

ta có : \(a^3+b^3+c^3=3abc\Rightarrow a=b=c\)

\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=2.2.2=8\)

6 tháng 2 2019

o0o I am a studious person o0o: Theo em thì: \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\orbr{\begin{cases}a=b=c\\a+b+c=0\end{cases}}\) chứ ạ?

19 tháng 12 2018

phân tích a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0

=>a=b=c(vì a+b+c khác 0)

thay a=b=c vào P

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right]=0\)

Do \(a+b+c\ne0\) nên \(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab=0\)

\(\Leftrightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-bc+c^2\right)+\left(c^2-ca+a^2\right)=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)

\(\Rightarrow\)\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

...

2 tháng 12 2018

Cảm ơn bạn nha

12 tháng 6 2018

\(a)\) Ta có : 

\(a+b+c=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)^3=0^3\)

\(\Leftrightarrow\)\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(a+b+c=0\)\(\Rightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(\Leftrightarrow\)\(a^3+b^3+c^3+3.\left(-c\right)\left(-a\right)\left(-b\right)=0\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\)\(a^3+b^3+c^3=3abc\) ( đpcm ) 

Vậy \(a^3+b^3+c^3=3abc\)

Chúc bạn học tốt ~ 

12 tháng 6 2018

a, a+b+c=0 => a+b=-c 

=>(a+b)3=(-c)3

=>a3+3a2b+3ab2+b3=-c3 

=>a3+3ab(a+b)+b3=-c3

Mà a+b=-c

=>a3-3abc+b3=-c3

=>a3+b3+c3=3abc (đpcm)

b, \(P=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{a^3+b^3+c^3}{abc}\)

mà a3+b3+c3=3abc (bài a)

\(\Rightarrow P=\frac{3abc}{abc}=3\)

Vậy P=3

19 tháng 6 2017

Nhận xét:\(\left(a+b\right)^3=a^3+b^3+3a^2b+3ab^2\)

=>   \(a^3+b^3=\left(a+b\right)^3-3a^2b-3ab^2\)

ta có \(a^3+b^3+c^3-3abc\)

Thay vào biểu thức trên ta có:

\(\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)

\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

=\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

=\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

Vay \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)

Do \(a^3+b^3+c^3=3abc\)và theo đầu bài \(a+b+c\ne0\)nen  \(a^2+b^2+c^2-ac-bc-ab=0\)

=> \(a=b=c\)

Vay  N = \(\frac{3a^2}{\left(3a\right)^2}=\frac{1}{3}\)

8 tháng 3 2017

GT không hợp lí 

Theo định lí cosi 3 số

a^3+b^3+c^3>=3*canbacba(a^3*b^3*c^3)

<=> a^3+b^3+c^3>=3abc

dấu"=" khi a=b=c

trái Gt a,b,c đôi một khác nhau

12 tháng 3 2017

Bạn sai rồi. Sao ngu vậy. Giải đến thế mà ko làm ra

18 tháng 4 2016

a(a-b)=0 +b(b-c)+c(c-a)=0 suy ra (a-b)2+(b-c)2+(c-a)2=0 suy ra a=b=c

Thay vào A ta đc min A=\(\frac{17}{4}\) tại a=b=c=\(\frac{1}{2}\)

18 tháng 4 2016

Từ giả thiết => a = 0 hoặc a = b

* TH1: a = 0

 b(b-c)+c(c-a)=0  <=> b(b-c)+c2=0 <=> b2 -bc + c2 =0 <=> \(\left(b-\frac{c}{2}\right)^2+\frac{3c^2}{4}=0\)

Điều này xảy ra khi và chỉ khi b - c/2 =0 và c = 0 => b = c = 0

Vậy a = b = c = 0 => A = 5

* TH2: a = b

 b(b-c)+c(c-a)=0 <=> b(b-c)+c(c-b)=0 <=> b2 - 2bc + c2 =0 <=> (b-c)2 =0=> b = c

Vậy a =b=c => A = a3 + a+a3 - 3a3 + 3a2 - 3a + 5

                          = 3a2 - 3a + 5 = (3a2 - 3a + 3/4) + 17/4 = 3. (a-1/2)2 + 17/4

Để A nhỏ nhất => a -1/2 =0 => a = 1/2 => Amin = 17/4  

17/4 < 5 => Vậy Amin = 17/4 khi a = b = c = 1/2

10 tháng 7 2016

Ta có:

\(a^3+b^3+c^3=3abc=>a^3+b^3+c^3-3abc=0\)

\(=>\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)

\(=>\left[\left(a+b\right)^3+c^3\right]-3a^2b-3ab^2-3abc=0\)

\(=>\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)=0\)

\(=>\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(=>\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)=0\)

\(=>\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Vì a3+b3+c3=3abc và a+b+c khác 0

=>\(a^2+b^2+c^2-ab-bc-ca=0\)

\(=>2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(=>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Tổng 3 số không âm = 0 <=> chúng đều = 0

\(< =>\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}< =>a=b=c}\)

Vậy \(\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{1}{3}\)

\(\)

10 tháng 7 2016

Ta có ; \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ac\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\frac{a+b+c}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

Vì \(a+b+c\ne0\) nên ta có \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)

a) Thay a = b = c vào biểu thức được : \(\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

b) Thay a = b = c vào P : \(P=\frac{2}{a}.\frac{2}{b}\frac{2}{c}=\frac{8}{abc}\)

14 tháng 8 2018

bài 1

Cho a + b + c = 0,Chứng minh a^3 + b^3 + c^ = 3abc,Hằng đẳng thức,Tính nhanh,A = x^3 + 0.03x^2 + 0.03x,x = 0.9,B = x^3 - 6x^2 + 12x + 1,x = 12,Thu gọn,1/8x^3 + 3/4x^2 + 3/2x + 1,x^3 - x^2 + 1/3x - 1/2,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

bài 2

ta có: \(\left(x+y\right)^3=x^3+y^3+3x^2y+3xy^2\)

\(\Leftrightarrow\)\(\left(x+y\right)^3=x^3+y^3+3xy\left(x+y\right)\)

mà x+y=1 nên

1=\(x^3+y^3+3xy.1\)

Vậy =1

14 tháng 8 2018

\(2;x^3+y^3+3xy\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=x^2-xy+y^3+3xy\)

\(=\left(x+y\right)^2=1\)

\(1;\left(a+b+c\right)^3=0\)

\(\Rightarrow\left[\left(a+b\right)+c\right]^3=0\)

\(\Rightarrow\left(a+b\right)^3+3.\left(a+b\right)^2.c+3\left(a+b\right).c^2+c^3=0\)

\(\Rightarrow a^3+3a^2b+3ab^2+b^3+3\left(a^2+2ab+b^2\right)c+3ac^2+3bc^2+c^3=0\)

\(\Rightarrow\left(a^3+b^3+c^3\right)+3a^2b+3ab^2+3a^2c+6abc+3b^2c+3ac^2+3bc^2=0\)