Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điều kiện xác định của phân thức là x khác 0 và x khác -3
nên bạn nhập phân thức vào máy rồi thay x =3 ta có P =1/6
\(S=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}}\)
Xét mẫu:
\(\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}\)
= \(\left(1+\frac{2013}{2}\right)+\left(1+\frac{2012}{3}\right)+...+\left(1+\frac{1}{2014}\right)+1\)
= \(\frac{2014}{2}+\frac{2014}{3}+....+\frac{2014}{2013}+\frac{2014}{2014}\)
= \(2014\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(\Rightarrow S=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{2014.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}\)
\(\Rightarrow S=\frac{1}{2014}\)
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
Ta có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+a+b+c=2+2018\)
\(\Leftrightarrow\frac{a+ab+bc}{b+c}+\frac{b+bc+ab}{c+a}+\frac{c+ac+bc}{a+b}=2020\)
\(\Leftrightarrow a\left(\frac{1+b+c}{b+c}\right)+b\left(\frac{1+a+c}{a+c}\right)+c\left(\frac{1+a+b}{a+b}\right)=2020\left(1\right)\)
Vì \(a+b+c=2018\Rightarrow\hept{\begin{cases}a+b=2018-c\\b+c=2018-a\\c+a=2018-b\end{cases}\left(2\right)}\)
Thay (2) vào (1) ta được:
\(a\left(\frac{2019-a}{b+c}\right)+b\left(\frac{2019-b}{a+c}\right)+c\left(\frac{2019-c}{a+b}\right)=2020\)
\(\Leftrightarrow\frac{2019a-a^2}{b+c}+\frac{2019b-b^2}{a+c}+\frac{2019c-c^2}{a+b}=2020\)
\(\Leftrightarrow\frac{2019a}{b+c}-\frac{a^2}{b+c}+\frac{2019b}{a+c}-\frac{b^2}{a+c}+\frac{2019c}{a+b}-\frac{c^2}{a+b}=2020\)
\(\Leftrightarrow2019\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)-\left(\frac{a^2}{c+b}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)=2020\)
\(\Leftrightarrow4038-\left(\frac{a^2}{c+b}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)=2020\)( vì \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=2\))
\(\Leftrightarrow\frac{a^2}{c+b}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=2018\)
\(\Leftrightarrow\frac{a^2}{c+b}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+1=2019\)
Ta có: Tử là:
B=\(\frac{1}{2013}+\frac{2}{2012}+...+\frac{2012}{2}+\left(1+1+...+1\right)\) (2013 số hạng 1)
=\(\left(\frac{1}{2013}+1\right)+\left(\frac{2}{2012}+1\right)+...+\left(\frac{2012}{2}+1\right)+\left(1\right)\)
=\(\frac{2014}{2013}+\frac{2014}{2012}+...+\frac{2014}{2}+\frac{2014}{2014}\)
=\(2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)\)
=>A=\(\frac{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)=2014
bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ
+ \(n\left(n+3\right)+2\) \(=n^2+3n+2\)
\(=n^2+2n+n+2=\left(n+1\right)\left(n+2\right)\)
\(A=\frac{1\cdot4+2}{1\cdot4}\cdot\frac{2\cdot5+2}{2\cdot5}\cdot...\cdot\frac{2019\cdot2022+2}{2019\cdot2022}\)
\(=\frac{2\cdot3}{1\cdot4}\cdot\frac{3\cdot4}{2\cdot5}\cdot...\cdot\frac{2020\cdot2021}{2019\cdot2022}\)
\(=\frac{2\cdot3\cdot..\cdot2020}{1\cdot2\cdot...\cdot2019}\cdot\frac{3\cdot4\cdot...\cdot2021}{4\cdot5\cdot...\cdot2022}\)
\(=2020\cdot\frac{3}{2022}=\frac{1010}{337}\)