K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2015

Goi hình thang ABCD, AB//CD, trên tia đối tia CD lấy E sao cho CE=AB.
Ta có:  tgABC=tgECB (g.c.g) 
=>BE=AC=9 và DE=DC+CE=DC+AB=15 
Lại có: BE2+ BD= 92+12= 15= DE2 
=> BD_|_BE 
Mặt khác: S(ABC) = S(ECB); S(ADC)=S(BDC) (cùng đáy, chiều cao = nhau) 
                S(ABCD)=S(ABC)+S(ADC) =S(ECB)+S(BDC) =S(BDE) = 1/2BD.BE = 54

S= 54.

Nếu đúng thì tick nha

DD
8 tháng 7 2021

Câu 11.12. 

Kẻ đường cao \(AH,BK\).

Do tam giác \(\Delta AHD=\Delta BKC\left(ch-gn\right)\)nên \(DH=BK\).

Đặt \(AB=AH=x\left(cm\right),x>0\).

Suy ra \(DH=\frac{10-x}{2}\left(cm\right)\)

Xét tam giác \(AHD\)vuông tại \(H\):

\(AD^2=AH^2+HD^2=x^2+\left(\frac{10-x}{2}\right)^2\)(định lí Pythagore) 

Xét tam giác \(DAC\)vuông tại \(A\)đường cao \(AH\):

\(AD^2=DH.DC=10.\left(\frac{10-x}{2}\right)\)

Suy ra \(x^2+\left(\frac{10-x}{2}\right)^2=10.\frac{10-x}{2}\)

\(\Leftrightarrow x=2\sqrt{5}\)(vì \(x>0\))

Vậy đường cao của hình thang là \(2\sqrt{5}cm\).

DD
8 tháng 7 2021

Câu 11.11. 

Kẻ \(AE\perp AC,E\in CD\).

Khi đó \(AE//BD,AB//DE\)nên \(ABDE\)là hình bình hành. 

Suy ra \(AE=BD=15\left(cm\right)\).

Kẻ đường cao \(AH\perp CD\)suy ra \(AH=12\left(cm\right)\).

Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AH\)

\(\frac{1}{AH^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AE^2}=\frac{1}{12^2}-\frac{1}{15^2}=\frac{1}{400}\)

\(\Rightarrow AC=20\left(cm\right)\)

\(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.15.20=150\left(cm^2\right)\),

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

26 tháng 7 2019

a,i, Tính được NF=15cm;  M F N ^ ≈ 37 0 và  M N F ^ = 53 0

ii, Tìm được MO =  36 5 cm, FO = 48 5 cm

iii, Tìm được  S F N E = 96 c m 2

Cách 1: Ta có  S F O H S F N E = F O F N . F H F E = 9 25

=>  S ∆ F O H = 34 , 56 c m 2

Cách 2: Gợi ý. Kẻ đường cao OK của ∆FOH =>  S ∆ F O H = 34 , 56 c m 2

b, Ta có ∆MFN ~ ∆FEM(g.g) =>  M F F E = M N F M <=>  M F 2 = M N . F E

a: NF=15cm

Xét ΔMNF vuông tại M có sin MFN=MN/NF=3/5

nên góc MFN=37 độ

=>góc MNF=53 độ

\(MO=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cn\right)\)

\(FO=\dfrac{12^2}{15}=9.6\left(cm\right)\)

b: Xét ΔMFN và ΔFEM có 

góc MFN=góc FEM

góc FNM=góc EMF

Do đó: ΔMFN đồng dạng với ΔFEM

Suy ra:MF/FE=MN/MF

hay \(MF^2=MN\cdot FE\)