Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có hình thang ABCD với A=D=90 độ và AC vuông BD. Vì AD=3 căn 13cm và OD=9cm, ta có:
OD^2 + AD^2 = OA^2
9^2 + (3 căn 13)^2 = OA^2
81 + 9*13 = OA^2
81 + 117 = OA^2
198 = OA^2
OA = căn 198 cm
Vì AC vuông BD, ta có:
AC^2 + BD^2 = OA^2
AC^2 + (AD - BC)^2 = OA^2
AC^2 + (3 căn 13 - BC)^2 = 198
AC^2 + 9*13 - 6 căn 13 * BC + BC^2 = 198
AC^2 + BC^2 - 6 căn 13 * BC + 117 = 198
AC^2 + BC^2 - 6 căn 13 * BC = 198 - 117
AC^2 + BC^2 - 6 căn 13 * BC = 81
Vì AC vuông BD, ta có:
AC^2 + BD^2 = OA^2
AC^2 + (AD - BC)^2 = OA^2
AC^2 + (3 căn 13 - BC)^2 = 198
AC^2 + 9*13 - 6 căn 13 * BC + BC^2 = 198
AC^2 + BC^2 - 6 căn 13 * BC + 117 = 198
AC^2 + BC^2 - 6 căn 13 * BC = 198 - 117
AC^2 + BC^2 - 6 căn 13 * BC = 81
b/ Qua O vẽ đường thẳng song song với đáy cắt AD và BC tại M và N. Ta có:
MN = AD - BC
MN = 3 căn 13 - BC
a, Áp dụng các hệ thức lượng trong tam giác vuông ABD, tính được BD = 25cm, OB = 9cm, OD = 16cm
b, Áp dụng các hệ thức lượng trong tam giác vuông DAC tính được OA = 12cm, AC = 100 3 cm
c, Tính được S = 1250 3 c m 2
a: NF=15cm
Xét ΔMNF vuông tại M có sin MFN=MN/NF=3/5
nên góc MFN=37 độ
=>góc MNF=53 độ
\(MO=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cn\right)\)
\(FO=\dfrac{12^2}{15}=9.6\left(cm\right)\)
b: Xét ΔMFN và ΔFEM có
góc MFN=góc FEM
góc FNM=góc EMF
Do đó: ΔMFN đồng dạng với ΔFEM
Suy ra:MF/FE=MN/MF
hay \(MF^2=MN\cdot FE\)
1)
a) Áp dụng định lí Pytago vào ΔMNF vuông tại M, ta được:
\(NF^2=MF^2+MN^2\)
\(\Leftrightarrow NF^2=9^2+12^2=225\)
hay NF=15(cm)
Xét ΔMNF vuông tại M có
\(\sin\widehat{MFN}=\dfrac{MN}{NF}=\dfrac{9}{15}=\dfrac{3}{5}\)
hay \(\widehat{MFN}\simeq37^0\)
\(\Leftrightarrow\widehat{MNF}=53^0\)