Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (231+69)*(28+72)
=300*100
=30000
c,đặt A=1+2+2^2+2^3+......+2^99+2^100
2A=2+2^2+2^3+2^4+......+2^100+2^101
2A-A=2^101-1
A=2^101-1/2
d,đặt S=5+5^3+5^5+.......+5^97+5^99
5^2S=5^3+5^5+5^7+.....+5^99+5^101
25S-S=5^101-5
24S=5^101-5
S=5^101-5/24
\(A=1+2+2^2+...+2^{100}\)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(A=2^{101}-1\)
\(B=5+5^3+...+5^{99}\)
\(25B=5^3+5^5+...+5^{101}\)
\(25B-B=\left(5^3+5^5+...+5^{101}\right)-\left(5+5^3+...+5^{99}\right)\)
\(24B=5^{101}-5\)
\(B=\frac{5^{101}-5}{25}=\frac{5^{100}-1}{5}\)
\(A=1+2+2^2+....+2^{100}\)
\(\Leftrightarrow2A=2+2^2+.....+2^{100}+2^{101}\)
\(\Leftrightarrow2A-A=\left(2+2^2+....+2^{101}\right)-\left(1+2+....+2^{100}\right)\)
\(\Leftrightarrow A=2^{101}-1\)
\(B=5+5^3+.....+5^{97}+5^{99}\)
\(\Leftrightarrow5^2B=5^3+5^5+....+5^{99}+5^{101}\)
\(\Leftrightarrow25B-B=\left(5^3+5^5+....+5^{101}\right)-\left(5+5^3+...+5^{97}\right)\)
\(\Leftrightarrow24B=5^{101}-5\)
\(\Leftrightarrow B=\frac{5^{101}-5}{24}\)
a,Đặt \(A=1+2+2^2+2^3+...+2^{100}\)
\(2A=2+2^2+2^3+2^4+...+2^{101}\)
\(A=2^{101}-1\)
b, Đặt \(B=5+5^3+5^5+...+5^{99}\)
\(25B=5^3+5^5+5^7+...+5^{101}\)
\(24B=5^{101}-5\)
\(B=\frac{5^{101}-5}{24}\)
Đặt \(A=1+2+2^2+2^3+...+2^{100}\)
=>\(2A=2+2^2+2^3+...+2^{101}\)
=>\(2A-A=A=\text{}\text{}2+2^2+2^3+...+2^{101}-1-2-2^2-...-2^{100}=2^{101}-1\)
(12+22+32+...+102).(1+3+5...+97+99).(36.333-108.111) [ Đặt (12+22+32+...+102).(1+3+5...+97+99) = A]
= A. (36.3.111-108.111)
= A.(108.111-108.111)
= A.0
= 0
Vậy tích trên bằng 0
(12+22+32+...+102).(1+3+5...+97+99).(36.333-108.111)
= ( 12 + 22 + 32 + ... + 102 ) . ( 1 + 3 +5 + ... + 97 + 99 ) . ( 36 . 3 . 111 - 36 . 3 . 111 )
= ( 12 + 22 + 32 + ... + 102 ) . ( 1 + 3 +5 + ... + 97 + 99 ) . 0
= 0
\(a,\)Đặt \(A=1+2+2^2+...+2^{99}+2^{100}\)
\(\Rightarrow2A=2+2^2+...+2^{100}+2^{101}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...2^{100}\right)\)
\(\Rightarrow A=2^{101}-1\)
\(b,\)Đặt \(B=5+5^3+5^5+...+5^{97}+5^{99}\)
\(\Rightarrow5^2B=5^3+5^5+...+5^{99}+5^{101}\)
\(\Rightarrow25B-B=\left(5^3+5^5+...+5^{99}+5^{101}\right)-\left(5+5^3+...+5^{99}\right)\)
\(\Rightarrow24B=5^{101}-5\)
\(\Rightarrow B=\frac{5^{101}-5}{24}\)