Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
H=22014 - 22013 - 22012 -... - 2 - 1
=>2H=22015 - 22014 - 22013 -... - 2
=>2H-H=22015 - 22014 - 22013 -... - 2 -(22014 - 22013 - 22012 -... - 2 - 1)
=>H=22015 - 22014 - 22013 -... - 2-22014+22013+22012+....+2+1
=>H=22015-22014-22014+1
=22015-(22014+22014)+1
=22015-2.22014+1
=22015-22014+1+1
=22015-22015+1
=1
=>2014H=20141=2014
\(19A=\dfrac{19^{2013}-38}{19^{2013}-1}=1-\dfrac{37}{19^{2013}-1}\)
\(19B=\dfrac{19^{2014}-38}{19^{2014}-1}=1-\dfrac{37}{19^{2014}-1}\)
Vì \(19^{2013}-1< 19^{2014}-1\)
nên \(\dfrac{37}{19^{2013}-1}>\dfrac{37}{19^{2014}-1}\)
=>A<B
Mik sắp làm xong thì bấm nhầm làm mất bài, bây h làm lại thì hơi mất thời gian. Mik hướng dẫn bn làm nhé.
Chứng minh nó chia hết cho 3; cho 7 rồi CM đc nó chia hết cho 21.
Đối vs A chia hết cho 3, bn ghép hai số lại vs nhau và Cm đc. Còn đối vs A chia hết cho 7, bn ghép 3 số lại làm 1 nhóm là Cm đc. Nếu ko biết thì cố nghĩ đi nhé. Chúc bạn học tốt.
A=22014-(22013+22012+...+22+2+1)
Đặt biểu thức trong ngoặc là B
Ta có:
2B=2(22013+22012+....+22+2+1)
2B=22014+22013+...23+22+2
Suy ra:
2B-B=(22014+22013+.....+23+22+...+2)-(22013+22012+.......22+2+1)
B=22014-1
=> A-B=22014-(22014-1)
=1
Vậy A=1
1. Ta có :
\(4A=\frac{2^2\left(2^{18}-3\right)}{2^{20}-3}=\frac{2^{20}-12}{2^{20}-3}=\frac{2^{20}-3-9}{2^{20}-3}=\frac{2^{20}-3}{2^{20}-3}-\frac{9}{2^{20}-3}=1-\frac{9}{2^{20}-3}\)
\(4B=\frac{2^2\left(2^{20}-3\right)}{2^{22}-3}=\frac{2^{22}-12}{2^{22}-3}=\frac{2^{22}-3-9}{2^{22}-3}=\frac{2^{22}-3}{2^{22}-3}-\frac{9}{2^{22}-3}=1-\frac{9}{2^{22}-3}\)
Vì \(2^{20}-3< 2^{22}-3\)
\(\Leftrightarrow\frac{9}{2^{20}-3}>\frac{9}{2^{22}-3}\)
\(\Leftrightarrow1-\frac{9}{2^{20}-3}< 1-\frac{9}{2^{22}-3}\)
\(\Leftrightarrow4A< 4B\)
\(\Leftrightarrow A< B\)
Vậy...
b/ Tương tự
A=\(2^{2011}+2^{2012}+2^{2013}+2^{2014}+2^{2015}+2^{2016}\)
A=\(\left(2^{2011}+2^{2012}\right)+\left(2^{2013}+2^{2014}\right)+\left(2^{2015}+2^{2016}\right)\)
A=\(2^{2011}\left(1+2\right)+2^{2013}\left(1+2\right)+2^{2015}\left(1+2\right)\)
A=\(2^{2011}\cdot3+2^{2013}\cdot3+2^{2015}\cdot3\)
A=\(3\left(2^{2011}+2^{2013}+2^{2015}\right)⋮3\)(1)
A=\(2^{2011}+2^{2012}+2^{2013}+2^{2014}+2^{2015}+2^{2016}\)
A=\(\left(2^{2011}+2^{2012}+2^{2013}\right)+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
A=\(2^{2011}\left(1+2+2^2\right)+2^{2014}\left(1+2+2^2\right)\)
A=\(2^{2011}\cdot7+2^{2014}\cdot7\)
A=\(7\cdot\left(2^{2011}+2^{2014}\right)⋮7\)(2)
Từ (1) và (2)\(\Rightarrow A⋮3,7\)
Mà ƯCLN(3,7)=1
\(\Rightarrow A⋮3\cdot7=21\)
A=22011+22012+22013+22014+22015+22016
A=22011.1+22011.2+22011.22+22011.23+22011.24+22011.25
A=22011.(1+2+22+23+24+25)
A=22011.(1+2+4+8+16+32)
A=22011.63
A=22011.3.21 chia hết cho 21