Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
\(\dfrac{x}{3}=\dfrac{y}{4}\)
=>\(\dfrac{x}{15}=\dfrac{y}{20}\)(1)
\(\dfrac{y}{5}=\dfrac{z}{6}\)
=>\(\dfrac{y}{20}=\dfrac{z}{24}\left(2\right)\)
Từ (1),(2) ta có \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
mà x+y=78
nên áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}=\dfrac{x+y}{15+20}=\dfrac{78}{35}\)
=>\(x=\dfrac{78}{35}\cdot15=\dfrac{234}{7};y=78\cdot\dfrac{20}{35}=\dfrac{312}{7};z=\dfrac{78}{35}\cdot24=\dfrac{1872}{35}\)
x/3 = y/4 ⇒ x/15 = y/20 (1)
y/5 = z/6 ⇒ y/20 = z/24 (2)
Từ (1) và (2) ⇒ x/15 = y/20 = z/24
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/15 = y/20 = z/24 = (x + y)/(15 + 20) = 78/35
x/15 = 78/35 ⇒ x = 78/35 . 15 = 234/7
y/20 = 78/35 ⇒ y = 78/35 . 20 = 312/7
z/24 = 78/35 ⇒ z = 78/35 . 24 = 1872/35
Vậy x = 234/7; y = 312/7; z = 1872/35
\(x\)và \(y\)tỉ lệ nghịch với \(6\)và \(5\)nên \(6x=5y\Leftrightarrow x=\frac{5}{6}y\).
\(y\)và \(z\)tỉ lệ thuận với \(4\)và \(5\)nên \(\frac{y}{4}=\frac{z}{5}\Leftrightarrow z=\frac{5}{4}y\).
Ta có: \(x+y+z=\frac{5}{6}y+y+\frac{5}{4}y=\frac{37}{12}y=74\)
\(\Leftrightarrow y=24\Rightarrow x=20,z=30\).
Bài 2:
\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)
\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)
x/15 = y/20 = z/24 = 11/59
x = 11.15/59
y = 11.20/59
z = 11.24/59
( cái tui thích nhất môn toán là học phải suy nghĩ)
\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{6}\)và\(y+z+x=11\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)
Áp dụng t/c của dãy tỉ số = nhau, ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=\frac{x+y+z}{15+20+24}=\frac{11}{59}\)
\(suy\)\(ra\)\(\frac{x}{15}=\frac{11}{59}\Rightarrow x=\frac{11.15}{59}=\frac{165}{59}\)
\(\frac{y}{20}=\frac{11}{59}\Rightarrow y=\frac{11.20}{59}=\frac{220}{59}\)
\(\frac{z}{24}=\frac{11}{59}\Rightarrow z=\frac{24.11}{59}=\frac{264}{59}\)