Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,D=R\\ b,2x-3>0\\ \Rightarrow x>\dfrac{3}{2}\\ \Rightarrow D=(\dfrac{3}{2};+\infty)\\ c,-x^2+4>0\\ \Rightarrow x^2< 4\\ \Leftrightarrow-2< x< 2\\ \Rightarrow D=\left(-2;2\right)\)
1.
\(y'=12x+\dfrac{4}{x^2}\)
2.
\(y'=\dfrac{3}{\left(-x+1\right)^2}\)
3.
\(y'=\dfrac{2x-3}{2\sqrt{x^2-3x+4}}\)
4.
\(y=\dfrac{x^3+3x^2-x-3}{x-4}\)
\(y'=\dfrac{\left(3x^2+6x-1\right)\left(x-4\right)-\left(x^3+3x^2-x-3\right)}{\left(x-4\right)^2}=\dfrac{2x^3-9x^2-24x+7}{\left(x-4\right)^2}\)
5.
\(y'=-\dfrac{4x-3}{\left(2x^2-3x+5\right)^2}\)
6.
\(y'=\sqrt{x^2-1}+\dfrac{x\left(x+1\right)}{\sqrt{x^2-1}}\)
1: Để đây là cấp số cộng thì
\(\left\{{}\begin{matrix}x=\dfrac{2+8}{2}=\dfrac{10}{2}=5\\8=\dfrac{y+x}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y+5=16\end{matrix}\right.\)
=>x=5 và y=11
2: Để bốn số này là cấp số cộng thì
\(\left\{{}\begin{matrix}a+b+1=2\cdot5=10\\b+1=\dfrac{5+13}{2}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=8\\a=1\end{matrix}\right.\)
1/ a/ \(y'=-5sinx+\frac{3}{cos^2\left(x+15^0\right)}\)
b/ \(y'=\frac{6cos3x\left(-4cosx-5\right)-8sinx.sin3x}{\left(4cosx+5\right)^2}\)
2/ \(y'=-3cosx-\frac{15}{sin^23x}\Rightarrow y'\left(\frac{\pi}{4}\right)=-3cos\left(\frac{\pi}{4}\right)-\frac{15}{sin^2\left(\frac{3\pi}{4}\right)}=-\frac{60+3\sqrt{2}}{2}\)
3/ \(y'=4x-5\)
a/ \(y'\left(2\right)=3\) ; \(y\left(2\right)=2\)
Tiếp tuyến: \(y=3\left(x-2\right)+2=3x-4\)
b/ Tiếp tuyến song song \(y=2x-3\Rightarrow\) có hệ số góc bằng 2
\(\Rightarrow4x_0-5=2\Rightarrow x_0=\frac{7}{4}\Rightarrow y\left(\frac{7}{4}\right)=\frac{11}{8}\)
Tiếp tuyến: \(y=2\left(x-\frac{7}{4}\right)+\frac{11}{8}\)
c/ \(-x+3y-1=0\Rightarrow y=\frac{1}{3}x+\frac{1}{3}\)
Tiếp tuyến vuông góc với d nên có hệ số góc bằng \(-3\)
\(\Rightarrow4x_0-5=-3\Rightarrow x_0=\frac{1}{2}\Rightarrow y\left(\frac{1}{2}\right)=2\)
Tiếp tuyến: \(y=-3\left(x-\frac{1}{2}\right)+2\)
3/ a, y=\(2x^2-5x+4\)
Ta có: \(x_o=2\)-> \(y_0=2\)
-> \(f'\left(x_0\right)=3\)
Nên ta có pttt: y'= 3x - 4
a.
\(y=\dfrac{3}{2}sin2x-2\left(cos^2x-sin^2x\right)+5=\dfrac{3}{2}sin2x-2cos2x+5\)
\(=\dfrac{5}{2}\left(\dfrac{3}{5}sin2x-\dfrac{4}{5}cos2x\right)+5=\dfrac{5}{2}sin\left(2x-a\right)+5\) (với \(cosa=\dfrac{3}{5}\))
\(\Rightarrow-\dfrac{5}{2}+5\le y\le\dfrac{5}{2}+5\)
b.
\(\Leftrightarrow y.sinx-2y.cosx+4y=3sinx-cosx+1\)
\(\Leftrightarrow\left(y-3\right)sinx+\left(1-2y\right)cosx=1-4y\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(\left(y-3\right)^2+\left(1-2y\right)^2\ge\left(1-4y\right)^2\)
\(\Leftrightarrow11y^2+2y-9\le0\)
\(\Leftrightarrow-1\le y\le\dfrac{9}{11}\)
c.
Do \(x^2+y^2=1\Rightarrow\) đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\)
\(\Rightarrow y=\dfrac{2\left(sin^2a+6sina.cosa\right)}{1+2sina.cosa+cos^2a}=\dfrac{1-cos2a+6sin2a}{1+sin2a+\dfrac{1+cos2a}{2}}=\dfrac{2-2cos2a+12sin2a}{3+2sin2a+cos2a}\)
\(\Leftrightarrow3y+2y.sin2a+y.cos2a=2-2cos2a+12sin2a\)
\(\Leftrightarrow\left(2y-12\right)sin2a+\left(y+2\right)cos2a=2-3y\)
Theo điều kiện có nghiệm của pt bậc nhất theo sin2a, cos2a:
\(\left(2y-12\right)^2+\left(y+2\right)^2\ge\left(2-3y\right)^2\)
\(\Leftrightarrow y^2+8y-36\le0\)
\(\Rightarrow-4-2\sqrt{13}\le y\le-4+2\sqrt{13}\)
thanks nhưng bạn có thể giải thích cho mình tại sao lại chuyển thành phân số 13 x y + 155/ 60 = 15/1