Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|x - 2| + |x + y| + |y +2z| = 0
=> |x - 2| = |x + y| = |y +2z| = 0
=> x= 0 + 2 = 2
=> |2 + y| = 0=> y = -2
=> |-2 + 2z| = 0 => 2z = 2 => z = 1
Vì
\(\left|x+2\right|\ge0\)
\(\left(y+5\right)^2\ge0\)
\(\Rightarrow\left|x+2\right|+\left(y+5\right)^2\ge0\)
Mà để \(\left|x+2\right|+\left(y+5\right)^2\le0\Rightarrow\orbr{\begin{cases}\left|x+2\right|=0\\\left(y+5\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=-5\end{cases}}}\)
Vậy \(x=-2;y=-5\)
Vì |x+2| +(y+5)2 \(\ge\)0
Mà ......(đề)......
Nên |x+2| + (y+5)2 =0
Lại có |x+2| \(\ge0\) ; \(\left(y+5\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}\left|x+2\right|=0\\\left(y+5\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+2=0\\y+5=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-5\end{cases}}\)
ta có vì
(2x-1)(2y+1)=-35
Vậy suy ra (2x-1) và (2y+1) thuộc ước của -35
Ư(-35)={+1;+5;+35;+7}
th1 2x-1=1 suy ra x=1
2y+1=-35 suy ra y=-18
th2
2x-1=-35 suy ra x=-17
2y+1=1 suy ra y=0
th3
2x-1=-5 suy ra x=-2
2y+1=7 suy ra y=3
th4
2x-1=7 suy ra x=8
2y+1=-5 suy ra x=-3
xong cậu liệt kê ra câu sau cũng làm như vậy
b) Vì x2; (2x - y)2 là các số chính phương mà x2 + (2x - y)2 = 106 có tận cùng là chữ số 6
=> x2 chỉ có thể tận cùng là 0; 1; 5 ; 6
Hơn nữa x2 < 106 . Do đó, x2 có thể bằng 0; 1; 16; 25; 36; 81; 100
+) x2 = 0 => (2x - y)2 = 106 ( loại)
+) x2 = 1 => (2x - y)2 = 105 ( Loại)
+) x2 = 16 => (2x - y)2 = 90 ( loại)
+) x2 = 25 => (2x - y)2 = 81 (Chọn)
x2 = 25 => x = 5 hoặc x = -5
x = 5 => (2.5 - y)2 = 81 => (10 - y)2 = 81 => 10 - y = 9 hoặc 10 - y = -9 => y = y = 1 hoặc y = 19
x = - 5 => (-10 - y)2 = 81 => -10 - y = 9 hoặc -10 - y = -9 => y = -19 hoặc y = -1
+) x2 = 36 => (2x - y)2 = 70 ( Loại)
+) x2 = 81 => (2x - y)2 = 25 ( chọn)
x2 = 81 => x = 9 hoặc x = -9
x = 9 => (18 - y)2 = 25 => 18 - y = 5 hoặc 18 - y = -9 => y = 13 hoặc y = 27
x = - 9 => (-18 - y)2 = 25 => -18 - y = 5 hoặc -18 - y = - 5 => y = -23 hoặc y = -13
+) x2 = 100 => (2x - y)2 = 6 ( loại)
Vậy.....
a.2x-1 và y+1 là cặp ước của -4
-4=-1.4=-4.1=-2.2
Ta có bảng giá trị:
2x-1 | -1 | 4 | -4 | 1 | -2 | 2 |
2x | 0 | 5 | -3 | 2 | -1 | 3 |
x | 0 | 5/2 | -3/2 | 1 | -1/2 | 3/2 |
y+1 | 4 | -1 | 1 | -4 | 2 | -2 |
y | 3 | -2 | 0 | -5 | 1 | -3 |
Vậy (x;y)\(\in\){(0;3);(5/2;-2);(-3/2;0);(1;-5);(-1/2;1);(3/2;-3)}
b.x2+xy-2=0
x(x+y)=2
x và x+y là cặp ước của 2
2=1.2=-1.-2
Ta có bảng giá trị:
x | 1 | 2 | -1 | -2 |
x+y | 2 | 1 | -2 | -1 |
y | 1 | -1 | -1 | 1 |
vậy(x;y)\(\in\){(1;1);(2;-1);(-1;-1)(-2;1)}.
c.x+xy+y=1
x(1+y)+y+1=1+1
(y+1)(x+1)=2
y+1 và x+1 là cặp ước của 2
2=1.2=-1.-2
Ta có bảng giá trị:
y+1 | 1 | 2 | -1 | -2 |
y | 0 | 1 | -2 | -3 |
x+1 | 2 | 1 | -2 | -1 |
x | 1 | 0 | -3 | -2 |
Vậy (x;y)\(\in\){(1;0);(0;1);(-3;-2);(-2;-3)}.
Vì
\(\left|x-2\right|\ge0\)
\(\left(y+2x\right)^2\ge0\)
\(\left|z+y\right|\ge0\)
\(\Rightarrow\left|x-2\right|+\left(y+2x\right)^2+\left|z+y\right|\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-2\right|=0\\\left(y+2x\right)^2=0\\\left|z+x\right|=0\end{cases}}\)
=> x = 2
<=> ( y + 2.2 )2 = 0
=> y + 4 = 0
=> y = - 4
<=> |z + ( - 4 )|= 0
<=> z = 4
Vậy x = 2; y = - 4 ; z = 4
Ta có:\(\left|x-2\right|=0\Rightarrow x=2\)
Tiếp tục tìm y, thế x, ta có: \(\left(y+2.2\right)^2=0\)
\(\Rightarrow\left(y+4\right)^2=0\)
\(\Rightarrow y+4=0\)
\(\Rightarrow y=-4\)
Đã có y, ta tiếp tục tìm z: \(\left|z+-4\right|=0\)\(\Rightarrow z=4\)
Vậy \(x=2;y=-4;z=4\)