Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=12k\\y=9k\\z=5k\end{matrix}\right.\left(1\right)\)
Ta có: xyz = 20 => 12k . 9k . 5k = 20
=> \(k^3.540=20\)
=> \(k^3=\dfrac{1}{27}\)
=> k = \(\dfrac{1}{3}\)
Thay \(k=\dfrac{1}{3}\) vào (1) ta có: x = 4; y = 3; z = \(\dfrac{5}{3}\)
đặt x/3=y/4=k
=>x=3k
y=4k
=>xy=3k.4k=12.k^2 =300
=>k^2 =25
=>k=5
=>x=5.3=15
y=5.4=20
b)chờ chút
a, ta co\(\frac{x}{3}=\frac{y}{4}=>\frac{x^2}{9}=\frac{x}{3}.\frac{y}{4}=\)\(\frac{300}{12}=25\)
=> x= 15=> y=10
a) Từ \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\) (1)
Từ \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\) (2)
Từ (1) và (2) =>\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3\cdot9\\y=-3\cdot7\\z=-3\cdot3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)
b) Từ \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\) (1)
Từ \(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{20}=\dfrac{z}{32}\) (2)
Từ (1) và (2) =>\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x+5y-2z}{14+100-64}=\dfrac{100}{50}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot7\\y=2\cdot20\\z=2\cdot32\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=14\\y=40\\z=64\end{matrix}\right.\)
c) Đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=> \(x=12k\) ; \(y=9k\) ;\(z=5k\)
=> xyz = \(12k\cdot9k\cdot5k\) =\(540\cdot k^3\) = 20
=>\(k^3=20:540=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\)
=>\(k=\dfrac{1}{3}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\cdot12\\y=\dfrac{1}{3}\cdot9\\z=\dfrac{1}{3}\cdot5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=\dfrac{5}{3}\end{matrix}\right.\)
d) Từ \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{25+49+9}=\dfrac{585}{83}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{585}{83}\cdot25\\y^2=\dfrac{585}{83}\cdot49\\z^2=\dfrac{585}{83}\cdot9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=\\y^2=\\z^2=\end{matrix}\right.\) đề bài sai nên ko tìm được x ; y ; z
a)
\(5x=7y\Rightarrow\frac{x}{7}=\frac{y}{5}\) và x+2y=51
áp dụng t/c dãy tỷ số = nhau ta có:
\(\frac{x}{7}=\frac{y}{5}=\frac{x+2y}{7+10}=\frac{51}{17}=3\)
\(\Rightarrow\frac{x}{7}=3\Rightarrow x=3.7=21\)
\(\Rightarrow\frac{y}{5}=3\Rightarrow y=3.5=15\)
Theo tính chất dãy tỉ số bằng nhau.
Ta có x/2=y/3=z/5 và x+y+z=810
x/2=y/3=z/5=x+y+z=810/2*3*5=810/30=27
Do đó x/2=27 => x=27*2=54
y/3=27 => y=27*3=81
z/5=27 => z=27*5=135
a) Theo đề bài, ta có:
\(\frac{x}{11}=\frac{y}{12};\frac{y}{3}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{11}=\frac{y}{12};\frac{y}{3.4}=\frac{z}{7.4}\)
\(\Rightarrow\frac{x}{11}=\frac{y}{12};\frac{y}{12}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{11}=\frac{y}{12}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{11}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{2.11-12+28}=\frac{152}{38}=4\)
Tự làm tiêp snha bạn
Câu b tương tự
a)
Ta có:
\(\frac{y}{3}=\frac{z}{7}\Leftrightarrow\frac{y}{12}=\frac{z}{28}\Rightarrow\frac{x}{11}=\frac{y}{12}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{11}=\frac{y}{12}=\frac{z}{28}\Leftrightarrow\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}=4\)
Suy ra \(x=11\cdot4=44;y=12\cdot4=48;z=28\cdot4=112\)
b)
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
Suy ra \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Do đó: \(x=8\cdot2=16;y=12\cdot2=24;z=15\cdot2=30\)
chúc bạn học tốt!
a) Đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
\(\Rightarrow x=12k;y=9k;z=5k\)
Ta có :\(xyz=12k.9k.5k=20\)
\(540.k^3=20\)
\(\Rightarrow k^3=\dfrac{1}{27}\)
\(\Rightarrow k=\dfrac{1}{3}\)
\(\Rightarrow x=12.\dfrac{1}{3}=4\)
\(\Rightarrow y=9.\dfrac{1}{3}=3\)
\(\Rightarrow z=5.\dfrac{1}{3}=\dfrac{5}{3}\)
Vậy \(x=4 ; y=3 ; z=5/3\)
Đặt:
\(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
\(\Leftrightarrow x=12k;y=9k;z=5k\)
\(xyz=20\Leftrightarrow12k.9k.5k=20\)
\(k\left(12.5.9\right)=20\)
\(540k=20\)
\(k=\dfrac{1}{27}\)
\(x=\dfrac{1}{27}.12=\dfrac{4}{9}\)
\(y=\dfrac{1}{27}.9=\dfrac{1}{3}\)
\(z=\dfrac{1}{27}.5=\dfrac{5}{27}\)