K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2015

đặt x/3=y/4=k

=>x=3k

y=4k

=>xy=3k.4k=12.k^2 =300

=>k^2 =25

=>k=5

=>x=5.3=15

y=5.4=20

b)chờ chút

1 tháng 11 2015

a, ta co\(\frac{x}{3}=\frac{y}{4}=>\frac{x^2}{9}=\frac{x}{3}.\frac{y}{4}=\)\(\frac{300}{12}=25\)

=> x= 15=> y=10

 

4 tháng 8 2016

a)

\(5x=7y\Rightarrow\frac{x}{7}=\frac{y}{5}\)  và x+2y=51

 áp dụng t/c dãy tỷ số = nhau ta có:

\(\frac{x}{7}=\frac{y}{5}=\frac{x+2y}{7+10}=\frac{51}{17}=3\)

\(\Rightarrow\frac{x}{7}=3\Rightarrow x=3.7=21\)

\(\Rightarrow\frac{y}{5}=3\Rightarrow y=3.5=15\)

4 tháng 8 2016

a) \(\hept{\begin{cases}5x=7y\\x+2y=51\end{cases}\Rightarrow\frac{x}{7}=\frac{y}{5}=\frac{x+2y}{7+10}=\frac{51}{17}=3.}\)

Vậy \(\hept{\begin{cases}x=3.7=21\\y=3.5=15\end{cases}}\)

b)Ta có: \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\xy=24\end{cases}}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=k\)

\(\Rightarrow xy=2k+3k=24\)

\(\Rightarrow6.k^2=24\)

\(\Rightarrow k^2=4\)

\(\Rightarrow k=2\)

\(\Rightarrow\hept{\begin{cases}x=2.2=4\\y=2.3=6\end{cases}}\)

c) Ta có: \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\\xyz=24\end{cases}}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

\(\Rightarrow xyz=2k+3k+4k=24\)

\(\Rightarrow24.k^3=24\)

\(\Rightarrow k^3=1\)

\(\Rightarrow k=1\)

\(\Rightarrow\hept{\begin{cases}x=1.2=2\\y=1.3=3\\z=1.4=4\end{cases}}\)

nha bạn, cảm ơn và CHÚC BẠN HỌC TỐT!

4 tháng 8 2016

5x=7y=> x/7=y/5

ADDTSBN =>x/7=y/5=(x+2y)/(7+2.5)=51/17=3

=> x/7=3=>x=21

y/5=3=> y=15

3 tháng 5 2016

Theo tính chất dãy tỉ số bằng nhau.

Ta có x/2=y/3=z/5 và x+y+z=810

x/2=y/3=z/5=x+y+z=810/2*3*5=810/30=27

Do đó x/2=27 => x=27*2=54

          y/3=27 => y=27*3=81

          z/5=27 => z=27*5=135

5 tháng 8 2016

b, Giải:

Ta có: \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\) 

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)

\(\frac{x}{15}=5\Rightarrow x=5.15=75\)

\(\frac{y}{10}=5\Rightarrow y=10.5=50\)

\(\frac{z}{6}=5\Rightarrow z=5.6=30\)

Vậy x = 75; y = 50; z = 30

5 tháng 8 2016

1. Tìm x, y, z bik 3x = 2y, 7y = 5z và x-y+z = 32
Ta có 3x=2y => x/2=y/3 <=> x/10 = y/15 (1)
7y = 5z => z/7 = y/5 <=> z/21 = y/15 (2)
Từ 1 và 2 ta suy ra x/10 = y/15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2
Vậy x = 10*2 = 20
y = 15*2 = 30
z = 21*2 = 42

8 tháng 6 2016

 a) Ta có \(\frac{x-1}{2}\)\(=\)\(\frac{y-2}{3}\)\(=\)\(\frac{z-3}{4}\)\(=\)\(\frac{2x-2}{4}\)\(=\)\(\frac{3y-6}{9}\)\(=\)\(\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)\(=\)\(\frac{\left(2x+3y-z\right)-5}{9}\)\(=\)\(\frac{50-5}{9}\)\(=\)5                                                       Do đó x \(=\)5\(\times\)2\(+\)1\(=\)11                                                                                                                                                           y\(=\)5\(\times\)3\(+\)2\(=\)17                                                                                                                                                            z\(=\)5\(\times\)4\(+\)3\(=\)23

20 tháng 6 2017

a) Đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)

\(\Rightarrow x=12k;y=9k;z=5k\)

Ta có :\(xyz=12k.9k.5k=20\)

\(540.k^3=20\)

\(\Rightarrow k^3=\dfrac{1}{27}\)

\(\Rightarrow k=\dfrac{1}{3}\)

\(\Rightarrow x=12.\dfrac{1}{3}=4\)

\(\Rightarrow y=9.\dfrac{1}{3}=3\)

\(\Rightarrow z=5.\dfrac{1}{3}=\dfrac{5}{3}\)

Vậy \(x=4 ; y=3 ; z=5/3\)

20 tháng 6 2017

Đặt:

\(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)

\(\Leftrightarrow x=12k;y=9k;z=5k\)

\(xyz=20\Leftrightarrow12k.9k.5k=20\)

\(k\left(12.5.9\right)=20\)

\(540k=20\)

\(k=\dfrac{1}{27}\)

\(x=\dfrac{1}{27}.12=\dfrac{4}{9}\)

\(y=\dfrac{1}{27}.9=\dfrac{1}{3}\)

\(z=\dfrac{1}{27}.5=\dfrac{5}{27}\)