Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\frac{a-1}{2}=\frac{b-2}{3}=\frac{c-3}{4}\Leftrightarrow\frac{2a-2}{4}=\frac{3b-6}{9}=\frac{c-3}{4}=\frac{2a-2+3b-6-c+3}{4+9-4}\)
\(=\frac{\left(2a+3b-c\right)-\left(2+6-3\right)}{4+9-4}=\frac{50-5}{9}=\frac{45}{9}=5\)
\(\frac{2a-2}{4}=5\Rightarrow a=\frac{4.5+2}{2}=11\)
\(\frac{3b-6}{9}=5\Rightarrow b=\frac{5.9+6}{3}=17\)
\(\frac{c-3}{4}=5\Rightarrow c=5.4+3=23\)
a,x:2=\(\frac{x}{2}\)\(y:5=\frac{y}{5}\)
Áp dụng t/c:
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
\(\hept{\begin{cases}x=2.3\\y=5.3\end{cases}}\hept{\begin{cases}x=6\\y=15\end{cases}}\)
Vậy x=6;y=15
I, Tìm x biết :
1.\(\frac{x}{-15}=\frac{-60}{x}\)
\(\Leftrightarrow2x=\left(-15\right).\left(-60\right)\)
\(\Leftrightarrow2x=900\)
\(\Leftrightarrow x=450\)
2. \(\frac{x-2}{x-1}=\frac{x+4}{x+7}\)
\(\Leftrightarrow\left(x-2\right).\left(x+7\right)=\left(x-1\right).\left(x+4\right)\)
\(\Leftrightarrow x^2+7x-2x-14=x^2+4x-x-4\)
\(\Leftrightarrow5x-14=3x-4\)
\(\Leftrightarrow2x=10\)
\(\Leftrightarrow x=5\)
Vậy : \(x=5\)
3)\(\frac{37-x}{x+13}=\frac{-3}{-7}=\frac{3}{7}\)
\(\Leftrightarrow\left(37-x\right).7=\left(x+13\right).3\)
\(\Leftrightarrow259-7x=3x+39\)
\(\Leftrightarrow220=4x\)
\(\Leftrightarrow x=55\)
Vậy : \(x=55\)
I.
1) \(\frac{x}{-15}=\frac{-60}{x}\)
=> \(x.x=\left(-60\right).\left(-15\right)\)
=> \(x.x=900\)
=> \(x^2=900\)
=> \(\left[{}\begin{matrix}x=30\\x=-30\end{matrix}\right.\)
Vậy \(x\in\left\{30;-30\right\}.\)
Chúc bạn học tốt!
1/ Ta có \(\frac{a}{2}=\frac{b}{3}\rightarrow\frac{a}{10}=\frac{b}{15}\) (1)
\(\frac{b}{5}=\frac{c}{4}\rightarrow\frac{b}{15}=\frac{c}{12}\)(2)
Từ (1) và (2) suy ra \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng t/c dãy TSBN
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{49}{7}=7\)
\(\Leftrightarrow\frac{a}{10}=7\rightarrow a=70\)
Tương tự với b và c
Vậy......
1. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)
\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}=\frac{5z-25-3x+3-4y-12}{30-6-16}\)
\(=\frac{\left(5z-3x-4y\right)-34}{8}=\frac{50-34}{8}=\frac{16}{8}=2\)
\(\Rightarrow\frac{x-1}{2}=2\)\(\Rightarrow x-1=4\)\(\Rightarrow x=5\)
\(\frac{y+3}{4}=2\)\(\Rightarrow y+3=8\)\(\Rightarrow y=5\)
\(\frac{z-5}{6}=2\)\(\Rightarrow z-5=12\)\(\Rightarrow z=17\)
Vậy \(x=5\); \(y=5\)và \(z=17\)
2. Từ \(2a=3b\)\(\Rightarrow\frac{a}{3}=\frac{b}{2}\)\(\Rightarrow\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}=\frac{a}{21}=\frac{b}{14}\)(1)
Từ \(5b=7c\)\(\Rightarrow\frac{b}{7}=\frac{c}{5}\)\(\Rightarrow\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}=\frac{b}{14}=\frac{c}{10}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
\(=\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow a=21.2=42\); \(b=14.2=28\); \(z=10.2=20\)
Vậy \(a=42\); \(b=28\); \(z=20\)
1.
a) Ta có: \(\frac{a}{c}=\frac{b}{d}.\)
\(\Rightarrow\frac{5a}{5c}=\frac{3b}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}\) (1)
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a-3b}{5c-3d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}.\)
\(\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\left(đpcm\right).\)
2.
Chúc bạn học tốt!