Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a)A=|x+1|+2016
Vì |x+1|\(\ge\)0
Suy ra:|x+1|+2016\(\ge\)2016
Dấu = xảy ra khi x+1=0
x=-1
Vậy MinA=2016 khi x=-1
b)B=2017-|2x-\(\frac{1}{3}\)|
Vì -|2x-\(\frac{1}{3}\)|\(\le\)0
Suy ra:2017-|2x-\(\frac{1}{3}\)|\(\le\)2017
Dấu = xảy ra khi \(2x-\frac{1}{3}=0\)
\(2x=\frac{1}{3}\)
\(x=\frac{1}{6}\)
Vậy Max B=2017 khi \(x=\frac{1}{6}\)
c)C=|x+1|+|y+2|+2016
Vì |x+1|\(\ge\)0
|y+2|\(\ge\)0
Suy ra:|x+1|+|y+2|+2016\(\ge\)2016
Dấu = xảy ra khi x+1=0;x=-1
y+2=0;y=-2
Vậy MinC=2016 khi x=-1;y=-1
d)D=-|x+\(\frac{1}{2}\)|-|y-1|+10
=10-|x+\(\frac{1}{2}\)|-|y-1|
Vì -|x+\(\frac{1}{2}\)|\(\le\)0
-|y-1| \(\le\)0
Suy ra: 10-|x+\(\frac{1}{2}\)|-|y-1| \(\le\)10
Dấu = xảy ra khi \(x+\frac{1}{2}=0;x=-\frac{1}{2}\)
y-1=0;y=1
Vậy Max D=10 khi x=\(-\frac{1}{2}\);y=1
Bài 1:
a)Ta thấy: \(\left|x+1\right|\ge0\)
\(\Rightarrow\left|x+1\right|+2016\ge0+2016=2016\)
\(\Rightarrow A\ge2016\)
Dấu = khi x=-1
Vậy MinA=2016 khi x=-1
b)Ta thấy:\(\left|2x-\frac{1}{3}\right|\ge0\)
\(\Rightarrow-\left|2x-\frac{1}{3}\right|\le0\)
\(\Rightarrow2017-\left|2x-\frac{1}{3}\right|\le2017-0=2017\)
\(\Rightarrow B\le2017\)
Dấu = khi x=1/6
Vậy Bmin=2017 khi x=1/6
c)Ta thấy:\(\begin{cases}\left|x+1\right|\\\left|y+2\right|\end{cases}\ge0\)
\(\Rightarrow\left|x+1\right|+\left|y+2\right|\ge0\)
\(\Rightarrow\left|x+1\right|+\left|y+2\right|+2016\ge0+2016=2016\)
\(\Rightarrow D\ge2016\)
Dấu = khi x=-1 và y=-2
Vậy MinD=2016 khi x=-1 và y=-2
d)Ta thấy:\(\begin{cases}-\left|x+\frac{1}{2}\right|\\-\left|y-1\right|\end{cases}\le0\)
\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|\le0\)
\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|+10\le0+10=10\)
\(\Rightarrow D\le10\)
Dấu = khi x=-1/2 và y=1
Vậy MaxD=10 khi x=-1/2 và y=1
Bài 1 :
\(\frac{x-1}{x-5}=\frac{6}{7}\Leftrightarrow7x-7=6x-30\)
\(\Leftrightarrow x=-23\)
\(\frac{x-2}{x-1}=\frac{x+4}{x+7}\)ĐK : \(x\ne1;-7\)
\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=\left(x+4\right)\left(x-1\right)\)
\(\Leftrightarrow x^2+5x-14=x^2+3x-4\)
\(\Leftrightarrow2x-10=0\Leftrightarrow x=5\)
a)Ta thấy:\(\begin{cases}\left|x-y+2\right|\ge0\\\left|2y+1\right|\ge0\end{cases}\)
\(\Rightarrow\left|x-y+2\right|+\left|2y+1\right|\ge0\) (1)
Mà \(\left|x-y+2\right|+\left|2y+1\right|\le0\) (2)
Từ (1) và (2) suy ra:
\(\left|x-y+2\right|+\left|2y+1\right|=0\)\(\Rightarrow\begin{cases}\left|x-y+2\right|=0\\\left|2y+1\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x-y+2=0\\2y+1=0\end{cases}\)\(\Rightarrow\begin{cases}x-y+2=0\\y=-\frac{1}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x-\left(-\frac{1}{2}\right)+2=0\\y=-\frac{1}{2}\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{5}{2}\\y=-\frac{1}{2}\end{cases}\)
b) Ta có: \(\left|x-1\right|\ge0\)
\(\left|2-x\right|\ge0\)
\(\Rightarrow\left|x-1\right|+\left|2-x\right|=4>0\)
\(\Rightarrow\left|x-1\right|+\left|2-x\right|=x-1+2-x=4\)
\(\Rightarrow\left(x-x\right)-\left(1-2\right)=4\)
\(\Rightarrow0+1=4\) ( vô lí )
Vậy x không có giá trị thỏa mãn
a) |x - 1| + |x - 3| < x + 1
Có: \(\left|x-1\right|+\left|x-3\right|\ge\left|x-1+3-x\right|=\left|2\right|=2\)
=> x + 1 > 2
=> x > 1
+ Với x < 3 thì |x - 1| + |x - 3| = (x - 1) + (3 - x) = 2
Mà x + 1 > 1 + 1 = 2 do x > 1, thỏa mãn
+ Với \(x\ge3\) thì |x - 1| + |x - 3| = (x - 1) + (x - 3) = 2x - 4 < x + 1
=> 2x - x < 1 + 4
=> x < 5
Vậy \(\left[\begin{array}{nghiempt}1< x< 3\\3\le x< 5\end{array}\right.\) thỏa mãn đề bài
b) Có: \(\left|x+y+2\right|\ge0;\left|2y+1\right|\ge0\forall x;y\)
\(\Rightarrow\left|x+y+2\right|+\left|2y+1\right|\ge0\)
Mà theo đề bài: \(\left|x+y+2\right|+\left|2y+1\right|\le0\)
=> |x + y + 2| + |2y + 1| = 0
\(\Rightarrow\begin{cases}\left|x+y+2\right|=0\\\left|2y+1\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x+y+2=0\\2y+1=0\end{cases}\)\(\Rightarrow\begin{cases}x+y=-2\\2y=-1\end{cases}\)\(\Rightarrow\begin{cases}x+y=-2\\y=\frac{-1}{2}\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{-3}{2}\\y=\frac{-1}{2}\end{cases}\)
Vậy \(x=\frac{-3}{2};y=\frac{-1}{2}\) thỏa mãn đề bài