K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

Câu 1:

a)A=|x+1|+2016

       Vì |x+1|\(\ge\)0

           Suy ra:|x+1|+2016\(\ge\)2016

     Dấu = xảy ra khi x+1=0

                                x=-1

 Vậy MinA=2016 khi x=-1

b)B=2017-|2x-\(\frac{1}{3}\)|

       Vì -|2x-\(\frac{1}{3}\)|\(\le\)0

             Suy ra:2017-|2x-\(\frac{1}{3}\)|\(\le\)2017

    Dấu = xảy ra khi \(2x-\frac{1}{3}=0\)

                               \(2x=\frac{1}{3}\)

                                \(x=\frac{1}{6}\)

Vậy Max B=2017 khi \(x=\frac{1}{6}\)

c)C=|x+1|+|y+2|+2016

         Vì |x+1|\(\ge\)0

              |y+2|\(\ge\)0

     Suy ra:|x+1|+|y+2|+2016\(\ge\)2016

                Dấu = xảy ra khi x+1=0;x=-1

                                           y+2=0;y=-2

Vậy MinC=2016 khi x=-1;y=-1

d)D=-|x+\(\frac{1}{2}\)|-|y-1|+10

      =10-|x+\(\frac{1}{2}\)|-|y-1|

             Vì      -|x+\(\frac{1}{2}\)|\(\le\)0

                         -|y-1|  \(\le\)0

    Suy ra:      10-|x+\(\frac{1}{2}\)|-|y-1|    \(\le\)10

Dấu = xảy ra khi \(x+\frac{1}{2}=0;x=-\frac{1}{2}\)

                           y-1=0;y=1

          Vậy Max D=10 khi x=\(-\frac{1}{2}\);y=1           



 

16 tháng 8 2016

Bài 1:

a)Ta thấy: \(\left|x+1\right|\ge0\)

\(\Rightarrow\left|x+1\right|+2016\ge0+2016=2016\)

\(\Rightarrow A\ge2016\)

Dấu = khi x=-1

Vậy MinA=2016 khi x=-1

b)Ta thấy:\(\left|2x-\frac{1}{3}\right|\ge0\)

\(\Rightarrow-\left|2x-\frac{1}{3}\right|\le0\)

\(\Rightarrow2017-\left|2x-\frac{1}{3}\right|\le2017-0=2017\)

\(\Rightarrow B\le2017\)

Dấu = khi x=1/6

Vậy Bmin=2017 khi x=1/6

c)Ta thấy:\(\begin{cases}\left|x+1\right|\\\left|y+2\right|\end{cases}\ge0\)

\(\Rightarrow\left|x+1\right|+\left|y+2\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|y+2\right|+2016\ge0+2016=2016\)

\(\Rightarrow D\ge2016\)

Dấu = khi x=-1 và y=-2

Vậy MinD=2016 khi x=-1 và y=-2

d)Ta thấy:\(\begin{cases}-\left|x+\frac{1}{2}\right|\\-\left|y-1\right|\end{cases}\le0\)

\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|\le0\)

\(\Rightarrow-\left|x+\frac{1}{2}\right|-\left|y-1\right|+10\le0+10=10\)

\(\Rightarrow D\le10\)

Dấu = khi x=-1/2 và y=1

Vậy MaxD=10 khi x=-1/2 và y=1

Bài 2: 

b: =>x-1>-4 và x-1<4

=>-3<x<5

c: =>x-2011>2012 hoặc x-2011<-2012

=>x>4023 hoặc x<-1

d: \(\left(3x-1\right)^{2016}+\left(5y-3\right)^{2018}>=0\forall x,y\)

mà \(\left(3x-1\right)^{2016}+\left(5y-3\right)^{2018}< 0\)

nên \(\left(x,y\right)\in\varnothing\)

26 tháng 6 2017

1a, 15-/2x-1/=8

=>/2x-1/=15-8 =7

=> 2x-1 =8 hoặc 2x-1=-8

=>2x =8+1=9 hoặc 2x=-8+1 =-7

=> x = 9:2 =4,5 hoặc 2x = (-7):2 = -3,5

vậy..........

26 tháng 6 2017

1b, /x+2/ +/5-2y/ =0

=> /x+2/=0và /5-2y/ =0

=> x=2 và 2y =5

=>x=2 và y=2,5

vậy....................

1 tháng 4 2016

fgdfgd

11 tháng 11 2016

a) |x - 1| + |x - 3| < x + 1

Có: \(\left|x-1\right|+\left|x-3\right|\ge\left|x-1+3-x\right|=\left|2\right|=2\)

=> x + 1 > 2

=> x > 1

+ Với x < 3 thì |x - 1| + |x - 3| = (x - 1) + (3 - x) = 2

Mà x + 1 > 1 + 1 = 2 do x > 1, thỏa mãn

+ Với \(x\ge3\) thì |x - 1| + |x - 3| = (x - 1) + (x - 3) = 2x - 4 < x + 1

=> 2x - x < 1 + 4

=> x < 5

Vậy \(\left[\begin{array}{nghiempt}1< x< 3\\3\le x< 5\end{array}\right.\) thỏa mãn đề bài

 

 

11 tháng 11 2016

b) Có: \(\left|x+y+2\right|\ge0;\left|2y+1\right|\ge0\forall x;y\)

\(\Rightarrow\left|x+y+2\right|+\left|2y+1\right|\ge0\)

Mà theo đề bài: \(\left|x+y+2\right|+\left|2y+1\right|\le0\)

=> |x + y + 2| + |2y + 1| = 0

\(\Rightarrow\begin{cases}\left|x+y+2\right|=0\\\left|2y+1\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x+y+2=0\\2y+1=0\end{cases}\)\(\Rightarrow\begin{cases}x+y=-2\\2y=-1\end{cases}\)\(\Rightarrow\begin{cases}x+y=-2\\y=\frac{-1}{2}\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{-3}{2}\\y=\frac{-1}{2}\end{cases}\)

Vậy \(x=\frac{-3}{2};y=\frac{-1}{2}\) thỏa mãn đề bài

24 tháng 1 2017

f)

\(A=\sqrt{\frac{\left(x+1\right)}{x-3}}=\sqrt{1+\frac{4}{x-3}}\)

x-3={-4)=> x=-1

Ta thấy : \(\left|x-1\right|\ge0\)

\(\left|y+2007\right|\ge0\)

\(\Rightarrow B=\left|x-1\right|=2\left|y+2007\right|-2010\ge-2010\)

\(MaxB=-2010\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2007=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2007\end{cases}}}\)

10 tháng 10 2016

a)có ng` lm r`

b)Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có:

\(C-10\ge\left|x-2+2009-x\right|=2007\)

\(\Rightarrow C\ge2017\)

Dấu = khi x=2 hoặc x=2009

Vậy MinC=2017 khi x=2 hoặc x=2009

c)Xét từng trường hợp và ta có:

MinD=-1 khi \(x\ge1\)

d)\(\left|x-1\right|+\left|x-5\right|+\left|x-7\right|\)

\(\ge\left|x-1+0+7-x\right|=6\)

\(\Rightarrow E\ge6\)

Dấu = khi \(\hept{\begin{cases}x-1\ge0\\x-5=0\\x-7\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x=5\\x\le7\end{cases}}\Leftrightarrow x=5\)

Vậy MinE=6 khi x=5