K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
T
6 tháng 7 2020
\(P\ge2x^2+16y^2+\frac{2}{x}+\frac{3}{y}+2\left(2-x-2y\right)\)
\(=\,{\frac { 2\left( x+1 \right) \left( x-1 \right) ^{2}}{x}}+{\frac { \left( 4\,y+3 \right) \left( 2\,y-1 \right) ^{2}}{y}}+14 \geq 14\)
Đẳng thức xảy ra khi $x=1,\,y=\frac{1}{2}.$
PS: Có một cách dùng AM-GM$,$ bạn tự làm:P
DA
1
ND
3 tháng 6 2019
Bài này dùng cô si điểm rơi
Mình đoán là x=1 y=1/2
Có A=(2x^2+2/x+2/x)+(16y^2+2/y+2/y)-2/x-1/y
áp dụng cô si 3 số vào 2 cái ngoặc đầu rồi tính ra(*)
còn -2/x-1/y=-(2/x+1/y)=-(2/x+2/2y)
áp dụng bđt svac vào 2/x+2/2y>=8/x+2y
mà x+2y>=2
nên -2/x-1/y>=-4(**)
tóm laị A>=14
dấu bằng xảy ra khi x=1 y=1/2
Chúc bạn học tốt!
GK
0
LN
0
NQ
1