K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2021

Ta có A = 5x2 - 2xy + 2y2 - 4x + 2y + 3

=> 2A = 10x2 - 4xy + 4y2 - 8x + 4y + 6

= (x2 - 4xy + 4y2) - 2(x - 2y) + 1 + 9x2 - 6x + 1 + 4

\(\left(x-2y\right)^2-2\left(x-2y\right)+1+9\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)+4\)

\(=\left(x-2y-1\right)^2+9\left(x-\frac{1}{3}\right)^2+4\)\(\ge4\)

=> A \(\ge\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2y-=0\\x-\frac{1}{3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2y=1\\x=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{3}\\x=\frac{1}{3}\end{cases}}\)

Vậy khi x = 1/3 ; y = -1/3 thì A đạt GTNN

7 tháng 2 2021

\(A=5x^2+2y^2-2xy-4x+2y\)\(+3\)

\(=\left(x^2-2xy+y^2\right)+\)\(\left(4x^2-4x+1\right)+\)\(\left(y^2+2y+1\right)+1\)

\(Tacó\)

27 tháng 5 2021

\(M=5x^2+y^2-2x+2y+2xy+2004\)

\(=\left(x^2+2x+1\right)+2y\left(x+1\right)+y^2+4x^2-4x+1+2002\)

\(=\left(x+1\right)^2+2y\left(x+1\right)+y^2+\left(2x-1\right)^2+2002\)

\(=\left(x+1+y\right)^2+\left(2x-1\right)^2+2003\ge2002\) với mọi x,y

=> \(M_{min}=2002\Leftrightarrow\left\{{}\begin{matrix}x+y+1=0\\2x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(M_{min}=2002\)

27 tháng 5 2021

Dòng 4 toi viết nhầm nha, là +2002 

5 tháng 7 2016

\(A=\sqrt{x^2-6x+9+2\left(y^2+2y+1\right)}+\sqrt{x^2+2x+1+3\left(y^2+2y+1\right)}.\)

\(A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)

Với mọi giá trị được xác định của x; giá trị của biến y không phụ thuộc vào x, ta luôn có:

\(A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\le\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+1\right)^2}\)(1)

Dấu "=" khi y = -1.

(1) \(\Rightarrow A\le\left|x-3\right|+\left|x+1\right|\)(2)

  • \(x< -1\)(2) \(\Rightarrow A\le-\left(x-3\right)-\left(x+1\right)=-2x+2>4\forall x< -1\)
  • \(-1\le x\le3\)(2) \(\Rightarrow A\le-\left(x-3\right)+\left(x+1\right)=4\forall-1\le x\le3\)
  • \(x>3\)(2) \(\Rightarrow A\le\left(x-3\right)+\left(x+1\right)=2x-2>4\forall x>3\)

Vậy GTNN của A = 4 khi -1<= x <= 3 và y = -1.

NV
19 tháng 8 2021

\(S=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(y^2-4y+4\right)+2021\)

\(S=\left(x+y+1\right)^2+\left(y-2\right)^2+2021\ge2021\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(-3;2\right)\)