\(5x^2+9y^2-12xy-6x+9=0\)

b)\(2x^2+2y^2+...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

a)

\(5x^2+9y^2-12xy-6x+9=0\)

\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(2x-3y\right)^2+\left(x-3\right)^2=0\)

Vì \(\hept{\begin{cases}\left(2x-3y\right)^2\ge0\\\left(x-3\right)^2\ge0\end{cases}}\)nên

\(\Rightarrow\hept{\begin{cases}\left(2x-3y\right)^2=0\\\left(x-3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x-3y=0\\x-3=0\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

Vậy x=3 và y=2

23 tháng 6 2017

b)

\(2x^2+2y^2+2xy-10x-8y+41=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-10x+25\right)+\left(y^2-8y+16\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2+\left(y-4\right)^2=0\)\(\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(x-5\right)^2\ge0\\\left(y-4\right)^2\ge0\end{cases}}\)nên

\(\Rightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x-5\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\x-5=0\\y-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x+y=0\\x=5\\y=4\end{cases}}}\)( VÔ nghiệm vì \(x+y\ne0\))

Vậy không có giá trị x, y nào thỏa mãn đề bài

5 tháng 11 2017

1.

a. x2 - 2x + 1 = 0

x2 - 2x*1 + 12 = 0

(x-1)2 = 0

............( tới đây tui bí rùi tự suy nghĩ rùi lm tiếp ik)

1, Tìm x biết:

a, x2 - 2x +1 = 0

(x-1)2 = 0

x-1 = 0

x = 1. Vậy ...

b, ( 5x + 1)2 - (5x - 3) ( 5x + 3) = 30

25x2 +10x + 1 - (25x2 -9) = 30

25x2 +10x + 1 - 25x2 +9 = 30

10x + 10 =30

10(x+1) = 30

x+1 =3

x = 2. vậy ...

c, ( x - 1) ( x2 + x + 1) - x ( x +2 ) ( x - 2) = 5

(x3 - 1) - x(x2 -4) = 5

x3 - 1 - x3 + 4x = 5

4x - 1 = 5

4x = 6

x = \(\dfrac{3}{2}\) .vậy ...

d, ( x - 2)3 - ( x - 3) ( x2 + 3x + 9 ) + 6 ( x + 1)2 = 15

x3 - 6x2 + 12x - 8 - (x3 - 27) + 6 (x2 + 2x +1) =15

x3 - 6x2 + 12x - 8 - x3 + 27 + 6x2 + 12x +6 =15

24x + 25 = 15

24x = -10

x = \(\dfrac{-5}{12}\) vậy ...

3 tháng 10 2018

a)\(x^2+4y^2+6x-12y+18=0\)

\(\Leftrightarrow\left(x^2+2\cdot x\cdot3+9\right)+\left[\left(2y\right)^2-2\cdot2y\cdot3+9\right]=0\)

\(\Leftrightarrow\left(x+3\right)^2+\left(2y-3\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+3=0\\2y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=\dfrac{3}{2}\end{matrix}\right.\)

b)\(2x^2+2y^2+2xy-10x-8y+41=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-2\cdot x\cdot5+25\right)+\left(y^2-2.y.4+16\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2+\left(y-4\right)^2\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=0\\x-5=0\\y-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=5\\y=4\end{matrix}\right.\)(vô lý)

28 tháng 7 2018

a , \(5x^2+9y^2-12xy-6x+9=0\)

\(\Leftrightarrow25x^2+45y^2-60xy-30x+45=0\)

\(\Leftrightarrow\left(5x\right)^2-2.5.\left(6y+3\right)+\left(6y+3\right)^2+9y^2-36y+36=0\)

\(\Leftrightarrow\left(5x-6y-3\right)^2+9\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(5x-6y-3\right)^2+9\left(y-2\right)^2=0\)

Vì \(\left\{{}\begin{matrix}\left(5x-6y-3\right)^2\ge0\\9\left(y-2\right)^2\ge0\end{matrix}\right.\Rightarrow\left(5x-6y-3\right)^2+9\left(y-2\right)^2\ge0\)

Dấu ''='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}5x-6y-3=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Vậy ...

Câu b thì sao bạn?

31 tháng 10 2017

A=x 22x+2

=x2-2x+1+1

=(x2-2x+1)+1

=(x-1)2+1

vì (x-1)2\(\ge0\forall x\)

=>(x-1)2+1\(\ge1\)

vậy A luôn dương với mọi x

B=x2+y2+2x4y+6

=x2+2x+1+y2-4y+4+1

=(x2+2x+1)+(y2-4y+4)+1

=(x+1)2+(y-2)2+1

do (x+1)2\(\ge0\forall x\)

(y-2)2\(\ge0\forall y\)

=>(x+1)2+(y-2)2\(\ge0\)

=>(x+1)2+(y-2)2+1\(\ge1\)

=>B\(\ge1\)

vậy B luôn dương với mọi x;y

C= x2+y2+z2+4x2y4z+10

=x2+4x+4+y2-2y+1+z2-4z+4+1

=(x2+4x+4)+(y2-2y+1)+(z2-4z+4)+1

=(x+2)2+(y-1)2+(z-2)2+1

do (x+2)2\(\ge0\forall x\)

(y-1)2\(\ge0\forall y\)

(\(\)z-2)2\(\ge0\forall z\)

=>(x+2)2+(y-1)2+(z-2)2\(\ge0\)

=>(x+2)2+(y-1)2+(z-2)2+1\(\ge1\)

=>C\(\ge1\)

vậy C luôn dương với mọi x;y;z

2 tháng 11 2017

bài 2: tìm x

a)\(x^2+y^2-2x+4y+5=0\)

\(\Leftrightarrow x^2+y^2-2x+4y+1+4=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy x=1; y=-2

b)\(5x^2+9y^2-12xy-6x+9=0\)

\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(2x-3y\right)^2+\left(x-3\right)^2\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2.3-3.y=0\\x=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)

Vậy x=2; y=3

NV
10 tháng 10 2020

a/

\(\Leftrightarrow\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(y^2-6y+9\right)-19=0\)

\(\Leftrightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2=19\)

Do 19 không thể phân tích thành tổng của 2 số chính phương nên pt vô nghiệm

b/

\(\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Do x; y nguyên dương nên \(\left(2x+2y\right)^2>0\Rightarrow VT>0\)

Pt vô nghiệm

NV
10 tháng 10 2020

c/

\(\Leftrightarrow\left(x^2+4y^2+25-4xy+10x-20y+25\right)+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)

\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)

Do x;y;z nguyên dương nên \(\left|x+y+z\right|>0\Rightarrow VT>0\)

Vậy pt vô nghiệm

d/

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

Do x;y;z nguyên dương nên vế phái luôn dương

Pt vô nghiệm

30 tháng 10 2016

\(5x^2+9y^2-12xy-6x+9=0\)

\(\Rightarrow4x^2+x^2+9y^2-12xy-6x+9=0\)

     \(< 2x-3y>^2+< x-3>^2=0\)

Vì \(< 2x-3y>^2>0\) và   \(< x-3>^2>0\)

nên \(< 2x-3y>^2+< x-3>^2=0\)

khi   \(2x-3y=0\)  và      \(x-3=0\)

DẤU < > Là Dấu ngoặc đon nha

30 tháng 10 2016

5x+ 9y2 - 12xy - 6x + 9 = 0

(2x-3y)2 + (x-3)2 = 0

(2x-3y-x+3)(2x-3y+x-3) = 0

(x-3y+3)(3x-3y-3) = 0

đến đây mik chịu

12 tháng 8 2018

      \(5x^2+9y^2-12xy-6x+9=0\)

\(\Rightarrow\left(4x^2+9y^2-12xy\right)+\left(x^2-6x+9\right)=0\)

\(\Rightarrow\left(2x-3y\right)^2+\left(x-3\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}2x-3y=0\\x-3=0\end{cases}\Rightarrow\hept{\begin{cases}2x=3y\\x=3\end{cases}\Rightarrow}\hept{\begin{cases}y=2\\x=3\end{cases}}}\)

12 tháng 8 2018

\(5x^2+9y^2-12xy-6x+9=0\)

<=>  \(\left(4x^2-12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)

<=>  \(\left(2x-3y\right)^2+\left(x-3\right)^2=0\)

<=>  \(\hept{\begin{cases}2x-3y=0\\x-3=0\end{cases}}\)

<=>  \(\hept{\begin{cases}y=2\\x=3\end{cases}}\)

Vậy...

10 tháng 9 2019

1) 

a) \(2x^2-12x+18+2xy-6y\)

\(=2x^2-6x-6x+18+2xy-6y\)

\(=\left(2xy+2x^2-6x\right)-\left(6y+6x-18\right)\)

\(=x\left(2y+2x-6\right)-3\left(2y+2x-6\right)\)

\(=\left(x-3\right)\left(2y+2x-6\right)\)

\(=2\left(x-3\right)\left(y+x-3\right)\)

b) \(x^2+4x-4y^2+8y\)

\(=x^2+4x-4y^2+8y+2xy-2xy\)

\(=\left(-4y^2+2xy+8y\right)+\left(-2xy+x^2+4x\right)\)

\(=2y\left(-2y+x+4\right)+x\left(-2y+x+4\right)\)

\(=\left(2y+x\right)\left(-2y+x+4\right)\)

2)  \(5x^3-3x^2+10x-6=0\)

\(\Leftrightarrow x^2\left(5x-3\right)+2\left(5x-3\right)=0\Leftrightarrow\left(x^2+2\right)\left(5x-3\right)=0\)

Mà \(x^2+2>0\Rightarrow5x-3=0\Rightarrow x=\frac{3}{5}\)

\(x^2+y^2-2x+4y+5=0\)

\(\Leftrightarrow x^2+y^2-2x+4y+4+1=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

3)\(P\left(x\right)=x^2+y^2-2x+6y+12\)

\(P\left(x\right)=x^2+y^2-2x+6y+1+9+2\)

\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)

Vậy \(P\left(x\right)_{min}=2\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

Bài làm

a) 2x2 - 12x + 18 + 2xy - 6y

= 2x2 - 6x - 6x + 18 + 2xy - 6y 

= ( 2xy + 2x2 - 6x ) - ( 6y + 6x - 18 )

= 2x( y + x - 3 ) - 6( y + x - 3 )

= ( 2x - 6 ) ( y + x - 3 )

# Học tốt #