Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\left|x-2017\right|\ge0\) với \(\forall x\)
\(\left|y-2018\right|\ge0\) với \(\forall x\)
\(\Rightarrow\left|x-2017\right|+\left|y-2018\right|\ge0\) với \(\forall x\)
\(\Rightarrow\) Không có giá trị của x; y thỏa mãn yêu cầu
Vậy \(x;y\in\varnothing\)
b) Ta có:
\(3.\left|x-y\right|^5\ge0\)
\(10.\left|y+\dfrac{2}{3}\right|^7\ge0\)
\(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\ge0\left(1\right)\)
Theo bài ra ta có: \(3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7\le0\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow3.\left|x-y\right|^5+10.\left|y+\dfrac{2}{3}\right|^7=0\)
\(\Rightarrow\left\{{}\begin{matrix}3.\left|x-y\right|^5=0\\10.\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-y\right|^5=0\\\left|y+\dfrac{2}{3}\right|^7=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x-y=0\\y+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=y\\y=\dfrac{-2}{3}\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=\dfrac{-2}{3}\\y=\dfrac{-2}{3}\end{matrix}\right.\)\(\)
a) Ta có: \(\hept{\begin{cases}\left|y-1\right|\ge0\forall y\\\left|5-x\right|\ge0\forall x\end{cases}\Rightarrow\left|y-1\right|+\left|5-x\right|\ge0\forall}x;y\)
Mà \(\left|y-1\right|+\left|5-x\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|y-1\right|=0\\\left|5-x\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}y-1=0\\5-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=5\end{cases}}}\)
Vậy \(\hept{\begin{cases}y=1\\x=5\end{cases}}\)
b) Ta có: \(\left|y-6\right|\ge0\forall y\)
\(\Rightarrow\left|y-6\right|>0\Leftrightarrow y\ne6\)
\(\Rightarrow\)Để \(\frac{\left|y-6\right|}{x+2}>0\)thì \(\hept{\begin{cases}y\ne6\\x+2>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y\ne6\\x>-2\end{cases}}\)
Vậy \(\hept{\begin{cases}y\ne6\\x>-2\end{cases}}\)
c) Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2>0\Leftrightarrow x\ne0\)
Để \(\frac{x^2-1}{x^2}>0\Leftrightarrow\hept{\begin{cases}x^2-1>0\\x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x\ne0\end{cases}\Leftrightarrow}x>1}\)
Vậy \(x>1\)
Tham khảo nhé~
Ta có : \(\hept{\begin{cases}\left|5-\frac{2}{3}x\right|\ge0\forall x\\\left|\frac{1}{7}y-3\right|\ge0\forall y\end{cases}}\Leftrightarrow\left|5-\frac{2}{3}x\right|+\left|\frac{1}{7}y-3\right|\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}5-\frac{2}{3}x=0\\\frac{1}{7}y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{15}{2}\\y=21\end{cases}}\)
b) Ta có \(\hept{\begin{cases}\left|5x+10\right|\ge0\forall x\\\left|6y-9\right|\ge0\forall y\end{cases}}\Leftrightarrow\left|5x+10\right|+\left|6y-9\right|\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}5x+10=0\\6y-9=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=1,5\end{cases}}\)
a, \(\left|\frac{2}{5}x-\frac{1}{10}\right|+\left|\frac{1}{2}y-\frac{1}{3}\right|\le0\)
Vì giá trị tuyệt đối luôn luôn \(\ge0\)
=> \(\left|\frac{2}{5}x-\frac{1}{10}\right|+\left|\frac{1}{2}y-\frac{1}{3}\right|=0\)
=> \(\left|\frac{2}{5}x-\frac{1}{10}\right|=0\) hoặc \(\left|\frac{1}{2}y-\frac{1}{3}\right|=0\)
TH1: \(\frac{2}{5}x-\frac{1}{10}=0\)
\(\frac{2}{5}x=\frac{1}{10}\)
\(x=\frac{1}{10}.\frac{5}{2}=\frac{1}{4}\)
TH2: \(\frac{1}{2}y-\frac{1}{3}=0\)
\(\frac{1}{2}y=\frac{1}{3}\)
\(y=\frac{1}{3}.2=\frac{2}{3}\)
=> x có 2 nghiệm { 1/4; 2/3 }
\(x^2+\left(y-\dfrac{1}{10}\right)^{2018}=0\\ \Leftrightarrow x^2+\left[\left(y-\dfrac{1}{10}\right)^{1009}\right]^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=0\\\left(y-\dfrac{1}{10}\right)^{1009}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)
x + 25| + |−y + 5| = 0
⇒ |x + 25| = 0 và |−y + 5| = 0
|x + 25| = 0
⇒ x + 25 = 0
⇒ x = −25
|−y + 5| = 0
⇒ −y + 5 = 0
⇒ −y = −5
⇒ y = 5
Vậy cặp số ( x,y) là (−25; 5)