K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

( x + 3 ).( x2 - 3x + 9 ) - x.( x - 2 ).( x + 2 ) = 15

 x3 - 3x2 + 9x + 3x2 - 9x + 27 - x.( x2 - 4 ) = 15

x3 - x3 + 4x = 15 - 27

 4x = -12

   x = -3

Vậy x = - 3

Lời giải

\(x^3-3x^2+9x+3x^2-9x+27-x.\left(x^2-4\right)\)

\(x^3-x^3+4x=15-27\)

\(4x=-12\)

\(x=-12:4\)

\(x=-3\)

23 tháng 8 2017

Câu 1:

Ta có:\(x\left(x^2-y\right)+x\left(y^2-y\right)-x\left(x^2+y^2\right)\)

      \(=x\left(x^2-y+y^2-y-x^2-y^2\right)\)

      \(=-2xy\)

Tại \(x=\frac{1}{2};y=-100\) PT có dạng:

       \(=-2.\frac{1}{2}.\left(-100\right)=100\)

      

23 tháng 8 2017

CẢM ƠN BN

26 tháng 7 2017

a) \(\left(x-3\right).\left(x^2+3x+9\right)-x.\left(x+4\right)\left(x-4\right)=21\)

\(\Leftrightarrow x^3-27-x.\left(x^2-16\right)=21\)    \(\Leftrightarrow x^3-27-x^3+16x=21\)

\(\Leftrightarrow16x=21+27\)  \(\Leftrightarrow16x=48\)  \(\Leftrightarrow x=3\)

b) \(\left(x+2\right)\left(x^2-2x+4\right)-x.\left(x^2+2\right)=4\)

\(\Leftrightarrow x^3+8-x^3-2x=4\)  \(\Leftrightarrow-2x=4-8\) \(\Leftrightarrow-2x=-4\) \(\Leftrightarrow x=2\)

26 tháng 7 2017

 (x-3) . (x2+3x+9) - x . (x+4) . (x-4) = 21  

  x3-33 - x ( x2-42)=21

  x-9- x3+16=21  

   ( tu lam not ha ) 

b) x3+23 - x3-2x=4

   8-2x=4

    2x = 4 

    x=2 

con a mình thấy kiểu j ik 

  

\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)

\(x^3-2x^2+4x+2x^2-4x+8-x^3+2x=15\)

\(2x+8=15\)

\(2x=7\)

\(x=\frac{7}{2}\)

\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\)

\(\Leftrightarrow9x+7=17\)

\(\Leftrightarrow9x=10\)

\(\Leftrightarrow x=\frac{10}{9}\)

3 tháng 7 2017

3) \(\left(x-3\right)\left(x+3\right)\left(x^2+9\right)-\left(x^2-2\right)\left(x^2+2\right)\)

\(=\left(x^2-9\right)\left(x^2+9\right)-\left(x^4-4\right)\)

\(=\left(x^4-81\right)-\left(x^4-4\right)\)

\(=x^4-81-x^4+4\)

=-77 =>đpcm

4)\(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)

\(=\left[\left(3x+1\right)-\left(3x+5\right)\right]^2\)

\(=\left(3x+1-3x-5\right)^2\)

=(-4)2

=16 => đpcm

3 tháng 7 2017

1)\(\left(x-2\right)^2-\left(x-3\right)\left(x-1\right)=\left(x^2-4x+4\right)-\left(x^2-4x+3\right)=1\)

=>đpcm

2)\(\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)

\(=\left(x-1-x-1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2\right]+6\left(x^2-1\right)\)

\(=\left(-2\right)\left(x^2-2x+1+x^2-1+x^2+2x+1\right)+6x^2-6\)

\(=\left(-2\right)\left(3x^2+1\right)+6x^2-6=-6x^2-2+6x^2-6=-8\) => đpcm

19 tháng 9 2018

Bài 1 :

1) 4x2 - y2 = ( 2x + y ) ( 2x - y )
2) 9x2 - 4y2 = ( 3x - 2y ) ( 3x + 2y )

3) 4x2 + y2 + 4xy = ( 2x + y )2

Bài 2:

1) 2x2 + 8x = 0

=> 2x ( x + 4 ) = 0

=> \(\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\) 

=> \(\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

2) 3 ( x - 4 ) + x2 - 4x = 0

=> 3 ( x - 4 ) + x ( x - 4 ) = 0

=> ( x - 4 ) ( 3 + x ) = 0

=> \(\orbr{\begin{cases}x-4=0\\3+x=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)

3) 3 ( x - 2 ) = x2 - 2x 

=> 3 ( x - 2 ) - x2 + 2x = 0

=> 3 ( x - 2 ) - x ( x - 2 ) = 0

=> ( x - 2 ) ( 3 - x ) = 0

=> \(\orbr{\begin{cases}x-2=0\\3-x=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

4) x ( x - 2 ) - 6 ( 2 - x ) = 0

=> x ( x - 2 ) + 6 ( x - 2 ) = 0

=> ( x - 2 ) ( x + 6 ) = 0

=> \(\orbr{\begin{cases}x-2=0\\x+6=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)

5) 2x ( x + 5 ) = x2 + 5x

=> 2x ( x + 5 ) - x2 - 5x = 0

=> 2x ( x + 5 ) - x ( x + 5 ) = 0

=> ( x + 5 ) ( 2x - x ) = 0

=> \(\orbr{\begin{cases}x+5=0\\2x-x=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-5\\x=0\end{cases}}\)

6 ) ( x - 2 )2 - x ( x + 3 ) = 9

=> x2 - 4x + 4 - x2 - 3x = 9

=> - 7x + 4 = 9

=> - 7x = 5

=> x = \(-\frac{5}{7}\)

19 tháng 9 2018

\(1,4x^2-y^2=\left(2x\right)^2-y^2=\left(2x-y\right)\left(2x+y\right)\)

\(2,9x^2-4y^2=\left(3x\right)^2-\left(2y\right)^2=\left(3x-2y\right)\left(3x+2y\right)\)

\(3,4x^2+y^2+4xy=\left(2x\right)^2+2.2x.y+y^2=\left(2x+y\right)^2\)

\(1,2x^2+8x=0\Rightarrow2x\left(x+4\right)=0\Rightarrow\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

\(2,3\left(x-4\right)+x^2-4x=0\)

\(\Rightarrow3\left(x-4\right)+x\left(x-4\right)=0\)

\(\Rightarrow\left(3+x\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3+x=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)

\(3,3\left(x-2\right)=x^2-2x\)

\(\Rightarrow3\left(x-2\right)-x^2+2x=0\)

\(\Rightarrow3\left(x-2\right)-x\left(x-2\right)=0\)

\(\Rightarrow\left(3-x\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3-x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)

\(4,x\left(x-2\right)-6\left(2-x\right)=0\)

\(\Rightarrow x\left(x-2\right)+6\left(x-2\right)=0\)

\(\Rightarrow\left(x+6\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+6=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-6\\x=2\end{cases}}\)

29 tháng 7 2017

               x + 1 = ( x + 1 )

               x + 1 = x2 + 2x + 1

               x - 2x - x2 = - 1 + 1

               - x - x2 = 0

                    - x ( x + 1) = 0

          TH1: - x = 0 suy ra x = 0

          TH2: x + 1 = 0 suy ra x = - 1

               Vậy x = 0 hoặc x = - 1.

29 tháng 7 2017

x = 0 nha!

 chúc bn học tốt~

13 tháng 8 2020

Dài quá ! Nên vẫn phải làm ^_^.

Bài 1: 

+) \(A=x^2-2x+6=x^2-2x+1+5=\left(x-1\right)^2+5\ge5\)

Min A = 5 \(\Leftrightarrow x=1\)

+) \(B=x^2+6x+12=x^2+6x+9+3=\left(x+3\right)^2+3\ge3\)

Min B = 3 \(\Leftrightarrow x=-3\)

+) \(C=4-x^2+2x=-\left(x^2-2x+4\right)=-\left[\left(x-1\right)^2+3\right]=-\left(x-1\right)^2-3\le-3\)

Max C = -3 \(\Leftrightarrow x=1\)

+) \(D=-x^2+6x=-\left(x^2-6x+9-9\right)=-\left(x-3\right)^2+9\le9\)

Max D = 9 \(\Leftrightarrow x=3\)

13 tháng 8 2020

Bài 2 :

a) \(x^2-x-3x+3=0\)

\(\Leftrightarrow x^2-4x+4-1=0\)

\(\Leftrightarrow\left(x-2\right)^2-1=0\)

\(\Leftrightarrow\left(x-2-1\right)\left(x-2+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

b) \(\left(x-3\right)^2-4=0\)

\(\Leftrightarrow\left(x-3-2\right)\left(x-3+2\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

c) Xem lại đề hộ mình nha 

d) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow x\in\left\{0;-3;2\right\}\)