Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(0.25x^3+x^2+x=0\)
\(\Leftrightarrow x^3+4x^2+4x=0\)
\(\Leftrightarrow x\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow x\left(x+2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
\(0,25x^3+x^2+x=0\)
\(x\left(0,25x^2+x+1\right)=0\)
\(x\left[\left(0,5x\right)^2+2\cdot0,5x\cdot1+1^2\right]=0\)
\(x\left(0,5x+1\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\0,5x+1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy.....
Ta có: x3-25x=0
=>(x2-25).x=0
=>x2-25=0=>x2=25=>x=-5,5
hoặc x=0
Vậy x=-5,0,5
x3 - 25x = 0
=> x(x2 - 25) = 0
=> x = 0 hoặc x2 - 25 = 0
=> x = 0 hoặc x2 = 25 = 52 = (-5)2
=> x = 0 hoặc x = + 5
x3-25x=0
=> x(x2-25)=0
=> x(x2-52)=0
=> x(x-5)(x+5)=0
=> x=0 hoặc x-5=0 hoặc x+5=0
=> x=0 hoặc x=5 hoặc x=-5
x3-25x=0
<=>x.(x2-25)=0
<=>x.(x-5)(x+5)=0
<=>x=0 hoặc x-5=0 hoặc x+5=0
<=>x=0 hoặc x=5 hoặc x=-5
a) 20x3y2 - 25x2y3 + 5x2y2
= 5x2y2(4x - 5y + 5)
b) Ta có x3 - 25x = 0
<=> x(x2 - 25) = 0
<=> x(x - 5)(x + 5) = 0
<=> x = 0 hoặc x - 5 = 0 hoặc x + 5 = 0
<=> x = 0 hoặc x = 5 hoặc x = -5
Vậy x \(\in\left\{0;5;-5\right\}\)là nghiệm phương trình
c) (x + 3)2 = x + 3
<=> (x + 3)2 - (x + 3) = 0
<=> (x + 3)(x + 3 - 1) = 0
<=> (x + 3)(x + 2) = 0
<=> \(\orbr{\begin{cases}x+3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}\)
Vậy x \(\in\left\{-3;-2\right\}\)
\(\left(3x+5\right)\left(7-2x\right)+6x\left(x+4\right)=0\)
\(\Leftrightarrow 21x-6x^2+35-10x+6x^2+24x=0\)
\(\Leftrightarrow35x+35=0\)
\(\Leftrightarrow35\left(x+1\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
\(x^3-25x=0\)
\(\Leftrightarrow x\left(x^2-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-25=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
Vậy ......
a) x2 - 25x = 0
=> x(x - 25) = 0
=> \(\orbr{\begin{cases}x=0\\x=25\end{cases}}\)
b) (x - 3)2 - 36x2 = 0
=> (x - 3)2 - (6x)2 = 0
=> \(\left(x+6x-3\right)\left(x-6x-3\right)=0\)
=> \(\orbr{\begin{cases}7x-3=0\\-5x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{7}\\x=-\frac{3}{5}\end{cases}}\)
c) 2x(3 - x) + 2x2 = 12
=> 6x - 2x2 + 2x2 = 12
=> 6x = 12
=> x = 2
d) x(x - 2) - x + 2 = 0
=> x(x - 2) - (x - 2) = 0
=> (x - 1)(x - 2) = 0
=> \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
a. x2 - 25x = 0
\(\Leftrightarrow x\left(x-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-25=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=25\end{cases}}\)
Vậy ...
b.(x-3)2 - 36x2 = 0
\(\Leftrightarrow\left(x-3-6x\right)\left(x-3+6x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-5x-3=0\\7x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{5}\\x=\frac{3}{7}\end{cases}}\)
Vậy...
c.2x(3-x)+2x2 = 12
<=> 6x - 2x2 + 2x2 = 12
<=> 6x = 12
<=> x = 2
d. x (x-2) - x + 2 =0
<=> x(x-2 ) - (x - 2 ) = 0
<=> ( x - 2 ) ( x - 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
Vậy...
b) ( 2x - 3 ) - ( 3 - 2x )( x - 1 ) = 0
<=> ( 2x - 3 ) + ( 2x - 3 )( x - 1 ) = 0
<=> ( 2x - 3 )( 1 + x - 1 ) = 0
<=> x( 2x - 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)
Vậy .....
a, 25x^2 - 1 - (5x -1)(x+2)=0
=> (5x)^2 - 1 + (5x-1)(x+2) = 0
=> (5x-1)(5x+1) + (5x-1)(x+2) = 0
=> (5x-1)(5x+1+x+2) = 0
=> (5x-1)(6x+3) = 0
=> \(\orbr{\begin{cases}5x-1=0\\6x+3=0\end{cases}}\)
c) x( 2x - 3 ) - 2( 3 - 2x) =0
\(\Leftrightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+2=0\\2x-3=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=\frac{3}{2}\end{array}\right.\)
d) 25x2 - 36 =0
\(\Leftrightarrow\left(5x\right)^2-6^2=0\)
\(\Leftrightarrow\left(5x-6\right)\left(5x+6\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}5x-6=0\\5x+6=0\end{array}\right.\)
\(\Leftrightarrow x=\pm\frac{6}{5}\)
a) \(x\left(2x-3\right)-2\left(3-2x\right)=0\)
=> \(\left(2x-3\right)\left(x+2\right)=0\)
=>\(\left[\begin{array}{nghiempt}2x-3=0\\x+2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=-2\end{array}\right.\)
b) \(25x^2-36=0\)
\(\Leftrightarrow\left(5x-6\right)\left(5x+6\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}5x-6=0\\5x+6=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{6}{5}\\x=-\frac{6}{5}\end{array}\right.\)
a) x3-9x2+27x-27=0
<=>(x-3)3=0
<=>x-3=0
<=>x=3
b) x3-25x=0
<=>x.(x2-25)=0
<=>x.(x-5)(x+5)=0
<=>x=0 hoặc x-5=0 hoặc x+5=0
<=>x=0 hoặc x=5 hoặc x=-5
c)9x2-1=0
<=>(3x-1)(3x+1)=0
<=>3x-1=0 hoặc 3x+1=0
<=>x=1/3 hoặc x=-1/3
a, x^3 - 9x^2 + 27x - 27 = 0
=> ( x - 3)^3 = 0
=> x - 3 = 0
=> x = 3
b, x^3 - 25x = 0
=> x(x^2 - 25) = 0
=> x(x-5)(x + 5) = 0
=> x =0 hoặc x - 5 = 0 hoặc x + 5 = 0
=> x= 0 hoặc x =5 hoặc x = -5
c, 9x^2 - 1 = 0
=> (3x)^2 - 1^2 = 0
=> ( 3x- 1)(3x+ 1) = 0
=> 3x - 1 = 0 hoặc 3x + 1 = 0
=> x = 1/3 hoặc x = -1/3
x3-25x=0
x(x2-25)=0
x(x2-52)=0
x(x-5)(x+5)=0
=> x=0 ; x-5= 0 hoặc x+5= 0
=> x=0; x=5 hoặc x= -5
=> x ={ 0;5;-5}