Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. x.(x+3)-x2+15=0
=> x^2 + 3x - x^2 + 15 = 0
=> 3x + 15 = 0
=> 3x = -15
=> x = -5
vậy_
b. (2x-1)(x+3) - x(2x-6) =15
=> 2x^2 + 6x - x - 3 - 2x^2 + 6x = 15
=> x - 3 = 15
=> x = 18
vậy_
c. x3 -36x = 0
=> x(x^2 - 36) = 0
=> x = 0 hoặc x^2 - 36 = 0
=> x = 0 hoặc x^2 = 36
=> x = 0 hoặc x = 6 hoặc x = -6
vậy_
d. 6x2 + 6x =x2+2x+1
=> 6x(x + 1) = (x + 1)^2
=> 6x(x + 1) - (x + 1)^2 = 0
=> (x + 1)(6x - x - 1) = 0
=> (x + 1)(5x - 1) = 0
=> x = -1 hoặc 5x = 1
=> x = -1 hoặc x = 1/5
vậy_
e. x(3x+1)=1-9x2
=> x(3x + 1) = (1 - 3x)(1 + 3x)
=> x(3x + 1) - (1 - 3x)(1 + 3x) = 0
=> (3x + 1)(x - 1 + 3x) = 0
=> (3x + 1)(4x - 1) = 0
=> 3x + 1 = 0 hoặc 4x - 1 = 0
=> 3x = -1 hoặc 4x = 1
=> x = -1/3 hoặc x = 1/4
vậy_
a)
\(\left(x+2\right)^2-9=0\)
\(\Rightarrow\left(x+2\right)^2=9=3^2\)
\(\Rightarrow x+2=\pm3\)
\(\Rightarrow x=-5;1\)
b)
\(25x^2-10x+1=0\)
\(\left(5x\right)^2-2\cdot5x+1^2=0\)
\(\Rightarrow\left(5x+1\right)^2=0\)
\(\Rightarrow5x+1=0\)
\(\Rightarrow5x=-1;x=\dfrac{-1}{5}\)
c)
\(x^2+14x+49=0\)
\(\Rightarrow x^2+2\cdot7x+7^2=0\)
\(\Rightarrow\left(x+7\right)^2=0;x+7=0\)
\(\Rightarrow x=-7\)
d)
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(4x^2-4x+1+x^2+6x+9-5x^2+5\cdot49=0\)
\(\Rightarrow5x^2-5x^2-4x+6x+10+245=0\)
\(\Rightarrow2x+255=0\)
\(\Rightarrow2x=-255\)
\(\Rightarrow x=\dfrac{-255}{2}\)
b) ( 2x - 3 ) - ( 3 - 2x )( x - 1 ) = 0
<=> ( 2x - 3 ) + ( 2x - 3 )( x - 1 ) = 0
<=> ( 2x - 3 )( 1 + x - 1 ) = 0
<=> x( 2x - 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)
Vậy .....
a, 25x^2 - 1 - (5x -1)(x+2)=0
=> (5x)^2 - 1 + (5x-1)(x+2) = 0
=> (5x-1)(5x+1) + (5x-1)(x+2) = 0
=> (5x-1)(5x+1+x+2) = 0
=> (5x-1)(6x+3) = 0
=> \(\orbr{\begin{cases}5x-1=0\\6x+3=0\end{cases}}\)
\(x\left(x-5\right)\left(x+5\right)-\left(x-2\right)\left(x^2+2x+4\right)=3\)
<=> \(x\left(x^2-25\right)-\left(x^3+2x^2+4x-2x^2-4x-8\right)=3\)
<=> \(x^3-25x-x^3-2x^2-4x+2x^2+4x+8=3\)
<=> \(-25x+8=3\)
<=> \(-25x=-5\)
<=> \(x=\frac{1}{5}\)
\(25x^2-2=0\)
<=> \(\left(5x\right)^2=2\)
<=> \(\hept{\begin{cases}5x=\sqrt{2}\\5x=-\sqrt{2}\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=\frac{-\sqrt{2}}{5}\end{cases}}\)
\(\left(x+2\right)^2=\left(2x-1\right)^2\)
<=> \(\hept{\begin{cases}x+2=2x-1\\x+2=-2x+1\end{cases}}\)
<=> \(\hept{\begin{cases}-x=-3\\3x=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\x=\frac{-1}{3}\end{cases}}\)
\(\left(x+2\right)^2-x^2+4=0\)
<=> \(\left(x+2\right)^2-\left(x^2-4\right)=0\)
<=> \(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
<=> \(\left(x+2\right)\left(x+2-x+2\right)=0\)
<=> \(\left(x+2\right).4=0\)
<=> \(x+2=0\)
<=> \(x=-2\)
câu còn lại tương tự nha
a/ \(25x^2-9=0\)
<=> \(\left(5x-3\right)\left(5x+3\right)=0\)
<=> \(\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}5x=3\\5x=-3\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}\)
b/ \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)
<=> \(x^2+8x+16-x^2+8x-9=16\)
<=> \(16x+7=16\)
<=> \(16x=9\)
<=> \(x=\frac{9}{16}\)
a) \(25x^2-9=0\)
\(\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=3\\5x=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}}\)
Vậy S = {3/5 ; -3/5}
b) \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)
\(\Leftrightarrow\left(x+4\right)^2-4^2-\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+4-4\right)\left(x+4+4\right)-\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x+8\right)-\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow x^2+8x-x^2-8x+9=0\)
\(\Leftrightarrow9=0\left(vl\right)\)
Vậy S = \(\varnothing\)
\(a,\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)
\(\left(x-1\right)\left(5x+3-3x+8\right)=0\)
\(\left(x-1\right)\left(2x+11\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\2x+11=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\2x=-11\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=-\frac{11}{2}\end{cases}}}\)
\(b,3x\left(25x+15\right)-35\left(5x+3\right)=0\)
\(15x\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\left(5x+3\right).5\left(3x-7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x+3=0\\5\left(3x-7\right)=0\end{cases}\Rightarrow\orbr{\begin{cases}5x=-3\\3x-7=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{3}{5}\\3x=7\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{3}{5}\\x=\frac{7}{3}\end{cases}}}\)
a) \(36x^2-49=0\)
\(\Leftrightarrow\left(6x\right)^2-7^2=0\)
\(\Leftrightarrow\left(6x-7\right)\left(6x+7\right)=0\)
\(TH_1:6x-7=0\) \(TH_2:6x+7=0\)
\(\Leftrightarrow6x=7\) \(\Leftrightarrow6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\) \(\Leftrightarrow x=-\dfrac{7}{6}\)
Vậy pt có tập nghiệm \(S=\left\{\dfrac{7}{6};-\dfrac{7}{6}\right\}\)
Bài 2
a) 36x2-49=0
⇔ (6x)2-49=0
⇔(6x-7).(6x+7)=0
TH1: 6x-7=0 TH2: 6x+7=0
⇔6x=7 ⇔6x=-7
⇔x=7/6 ⇔x=-7/6
a)2x2-6x=0
=>x(2x-6)=0
=>x=0 hoặc 2x-6=0
Với 2x-6=0 =>2x=6 <=>x=3
a) x2 - 25x = 0
=> x(x - 25) = 0
=> \(\orbr{\begin{cases}x=0\\x=25\end{cases}}\)
b) (x - 3)2 - 36x2 = 0
=> (x - 3)2 - (6x)2 = 0
=> \(\left(x+6x-3\right)\left(x-6x-3\right)=0\)
=> \(\orbr{\begin{cases}7x-3=0\\-5x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{7}\\x=-\frac{3}{5}\end{cases}}\)
c) 2x(3 - x) + 2x2 = 12
=> 6x - 2x2 + 2x2 = 12
=> 6x = 12
=> x = 2
d) x(x - 2) - x + 2 = 0
=> x(x - 2) - (x - 2) = 0
=> (x - 1)(x - 2) = 0
=> \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
a. x2 - 25x = 0
\(\Leftrightarrow x\left(x-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-25=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=25\end{cases}}\)
Vậy ...
b.(x-3)2 - 36x2 = 0
\(\Leftrightarrow\left(x-3-6x\right)\left(x-3+6x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-5x-3=0\\7x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{5}\\x=\frac{3}{7}\end{cases}}\)
Vậy...
c.2x(3-x)+2x2 = 12
<=> 6x - 2x2 + 2x2 = 12
<=> 6x = 12
<=> x = 2
d. x (x-2) - x + 2 =0
<=> x(x-2 ) - (x - 2 ) = 0
<=> ( x - 2 ) ( x - 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
Vậy...