lklos
Giới thiệu về bản thân
a) \(x^2-6x+10>x^2-6x+9=\left(x-3\right)^2>0\\ \Rightarrow x^2-6x+10>0\)
b)\(4x^2-20x+27>4x^2-20x+25=\left(2x+5\right)^2\ge0\\ \Rightarrow4x^2-20x+27>0\)
c)\(x^2+x+1>x^2\ge0\)
d)\(x^2+4x+y^2+6y+15=\left(x+2\right)^2+\left(y+3\right)^2+2\\ \left(x+2\right)^2\ge0;\left(y+3\right)^2\ge0;\\ \Rightarrow x^2+4x+y^2+6y+15\ge2>0\)
a) \(6a^3-a^{10}+4a^3+a^{10}-8a^3=4a^3-2a^3=2a^3=2\left(-2\right)^3=2\left(-8\right)=-16\)
\(x^2+2y^2+2xy+4y=6\)
\(=\left(x^2+2xy+y^2\right)+y^2+4y=6\)
Nếu \(y=0\)
\(\Rightarrow4y+y^2=0,\left(x+y\right)^2=x^2\\ \Rightarrow x^2=6\\ \Rightarrow x=\sqrt{6}\)
(vô lý)
\(\Rightarrow y>0\\ \Rightarrow4y\ge4;y^2\ge1\\\Rightarrow4y+y^2\ge5\\ \Rightarrow\left(x+y\right)^2\le1\Rightarrow x+y=\left(0;1\right).\\ y>0 \Rightarrow x+y=1\\ \Rightarrow\left(x;y\right)=\left(0;1\right)\)
a)
\(\left(x+2\right)^2-9=0\)
\(\Rightarrow\left(x+2\right)^2=9=3^2\)
\(\Rightarrow x+2=\pm3\)
\(\Rightarrow x=-5;1\)
b)
\(25x^2-10x+1=0\)
\(\left(5x\right)^2-2\cdot5x+1^2=0\)
\(\Rightarrow\left(5x+1\right)^2=0\)
\(\Rightarrow5x+1=0\)
\(\Rightarrow5x=-1;x=\dfrac{-1}{5}\)
c)
\(x^2+14x+49=0\)
\(\Rightarrow x^2+2\cdot7x+7^2=0\)
\(\Rightarrow\left(x+7\right)^2=0;x+7=0\)
\(\Rightarrow x=-7\)
d)
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(4x^2-4x+1+x^2+6x+9-5x^2+5\cdot49=0\)
\(\Rightarrow5x^2-5x^2-4x+6x+10+245=0\)
\(\Rightarrow2x+255=0\)
\(\Rightarrow2x=-255\)
\(\Rightarrow x=\dfrac{-255}{2}\)