Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a) có: \(|x-\frac{3}{2}|,|x+1|,\left|x-2\right|\ge0\Rightarrow4x\ge0\Rightarrow x\ge0\)
\(x\ge0\Rightarrow x-\frac{3}{2}\ge\frac{-3}{2}\Rightarrow\left|x-\frac{3}{2}\right|\ge\left|\frac{-3}{2}\right|=\frac{3}{2}\Rightarrow\left|x-\frac{3}{2}\right|=x-\frac{3}{2}\)
cmtt: \(|x-2|=x-2\)
\(\Rightarrow3x-\frac{3}{2}+1-2=4x\)
\(\Rightarrow3x-\frac{5}{2}=4x\)
\(\Rightarrow x=\frac{-5}{2}\left(ko,t/m\right)\)
1) Ta có\(\frac{x+2}{5}=\frac{1}{x-2}\)
=> (x + 2)(x - 2) = 5
=> x2 + 2x - 2x - 4 = 5
=> x2 - 4 = 5
=> x2 = 9
=> \(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
2) \(\frac{3}{x-4}=\frac{x+4}{3}\)
=> (x - 4)(x + 4) = 9
=> x2 + 4x - 4x - 16 = 9
=> x2 - 16 = 9
=> x2 = 25
=> \(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
a, \(\frac{x+2}{5}=\frac{1}{x-2}ĐK:x\ne2\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{5\left(x-2\right)}=\frac{5}{5\left(x-2\right)}\Leftrightarrow\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow x^2-2x+2x-4=5\Leftrightarrow x^2=9\Leftrightarrow x\pm3\)
b, \(\frac{3}{x-4}=\frac{x+4}{3}ĐK:x\ne4\)
\(\Leftrightarrow\frac{9}{\left(x-4\right)3}=\frac{\left(x+4\right)\left(x-4\right)}{3\left(x-4\right)}\Leftrightarrow9=x^2-4x+4x-16\)
\(\Leftrightarrow x^2-16=9\Leftrightarrow x^2=25\Leftrightarrow x=\pm5\)
c, \(\frac{x+2}{x+6}=\frac{3}{x}=1ĐK:x\ne0;-6\)
Xét : \(\frac{x+2}{x+6}=1\Leftrightarrow x+2=x+6\Leftrightarrow-4\ne0\)
Xét : \(\frac{3}{x}=1\Leftrightarrow3=x\)
= (x2+1)3 - [(x2)3 + 13]=0
(x6+ 3.x4 +3.x2 +1) - (x6+1) =0
x6+3.x4+3.x2+1-x6-1=0
3.x4+3.x2=0
3.x2(x2+1)=0
\(\orbr{\begin{cases}3.x^2=0\\x^2+1=0\end{cases}}\orbr{ }\Rightarrow\orbr{\begin{cases}x=0\\x^2=-1\left(loai\right)\end{cases}}\)
vay x=0
\(4\left(x-1\right)-2\left(x-2\right)=3\)
\(\Leftrightarrow\) \(4x-4-2x+4=3\)
\(\Leftrightarrow\) \(2x=4\)
a; (\(x\) - 2)2.(\(x+1\)).(\(x\) - 4) < 0
(\(x-2\))2 ≥ 0 ∀\(x\); \(x+1\) = 0 ⇒ \(x=-1\); \(x-4\) = 0 ⇒ \(x=4\)
Lập bảng ta có:
\(x\) | - 1 4 |
\(x+1\) | - 0 + | + |
\(x-4\) | - | - 0 + |
(\(x-2\))2 | + | + | + |
(\(x-2\))2.(\(x+1\)).(\(x+4\)) | + 0 - 0 + |
Theo bảng trên ta có: -1 < \(x\) < 4
Vậy \(-1< x< 4\)
b; [\(x^2\).(\(x-3\)):(\(x-9\))] < 0
\(x-3=0\)⇒ \(x=3\); \(x-9\) = 0 ⇒ \(x=9\)
Lập bảng ta có:
\(x\) | 3 9 |
\(x-3\) | - 0 + | + |
\(x-9\) | - | - 0 + |
\(x^2\) | + | + | + |
\(x^2\)(\(x-3\)):(\(x-9\)) | + 0 - 0 + |
Theo bảng trên ta có: 3 < \(x\) < 9
Vậy 3 < \(x\) < 9
`x^2 +3(x-1/2)=x^2+3`
`=>x^2+3x-3/2 =x^2+3`
`=> x^2 +3x-x^2=3+3/2`
`=> 3x=6/2+3/2`
`=>3x= 9/2`
`=>x= 9/2 : 3`
`=>x= 9/6= 3/2`
Vậy `x=3/2`
\(x^2+3\left(x-\dfrac{1}{2}\right)=x^2+3\\ \Rightarrow x^2-x^2+3x-\dfrac{3}{2}=3\\ \Rightarrow3x=\dfrac{3}{2}+3\\ \Rightarrow3x=\dfrac{9}{2}\\ \Rightarrow x=\dfrac{9}{2}:3\\ \Rightarrow x=\dfrac{3}{2}\)
Vậy \(x\in\left\{\dfrac{3}{2}\right\}\)