Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
H.(7x-11)3 =25.52 +200
=(7x-11)3 =32.25 +200 =(7x-11)3 =800 +200
=(7x-11)3 =1000 =(7x-11)3 = 103
= 7x-11 = 10 = 7x = 10 + 11
= 7x = 21 = x = 21:7
= x = 3
I.3x +25 = 26.22+2.30
=3x +25 = 26.4 +2.1 =3x +25 = 106
=3x = 106-25 =3x = 81
=3x = 34 => x =4
K.27.3x= 243
= 3x =243:27
= 3x = 9
= 3x = 32
=> x = 2
Mấy câu khác cứ thế làm nha
Giải:
\(a,2^x-15=17.\)
\(2^x=17+15.\)
\(2^x=32.\)
\(2^x=2^5.\)
\(\Rightarrow x=5\in N.\)
Vậy \(x=5.\)
\(b,\left(7x-11\right)^3=2^5.5^2+200.\)
\(\left(7x-11\right)^3=32.25+200.\)
\(\left(7x-11\right)^3=800+200.\)
\(\left(7x-11\right)^3=1000.\)
\(\left(7x-11\right)^3=10^3.\)
\(\Rightarrow7x-11=10.\)
\(\Rightarrow7x=10+11=21.\)
\(\Rightarrow x=21:7=3\in N.\)
Vậy \(x=3.\)
\(c,3^x+25=26.2^2+2.3^0.\)
\(3^x+25=26.2^2+2.1.\)
\(3^x+25=2\left(26.2+1\right).\)
\(3^x+25=2.53.\)
\(3^x+25=106.\)
\(3^x=106-25.\)
\(3^x=81.\)
\(3^x=3^4\Rightarrow x=4\in N.\)
Vậy \(x=4.\)
\(d,49.7^x=2041.\)(đề này sai).
Sửa đề:
\(49.7^x=2401.\)
\(7^x=2401:49.\)
\(7^x=49.\)
\(7^x=7^2\Rightarrow x=2\in N.\)
Vậy \(x=2.\)
\(e,3^x=243.\)
\(3^x=3^5\Rightarrow x=5\in N.\)
Vậy \(x=5.\)
~ Học tốt!!! ~
a, \(2^x-15=17\)
\(\Rightarrow2^x=32\Rightarrow2^x=2^5\)
Vì \(2\ne-1;2\ne0;2\ne1\) nên \(x=5\)
Vậy....
b, \(\left(7x-11\right)^3=2^5.5^2+200\)
\(\Rightarrow\left(7x-11\right)^3=32.25+200\)
\(\Rightarrow\left(7x-11\right)^3=1000=10^3\)
\(\Rightarrow7x-11=10\Rightarrow7x=21\Rightarrow x=3\)
Vậy.....
c, \(3^x+25=26.2^2+2.3^0\)
\(\Rightarrow3^x+25=26.4+2\)
\(\Rightarrow3^x=104+2-25\)
\(\Rightarrow3^x=81=3^4\)
Vì \(3\ne-1;3\ne0;3\ne1\) nên x=4
Vậy.....
d,Sửa đề:\(49.7^x=2401\)
\(\Rightarrow7^2.7^x=7^4\Rightarrow7^{2+x}=7^4\)
Vì \(7\ne-1;7\ne0;7\ne1\) nên \(2+x=4\Rightarrow x=2\)
Vậy.....
Câu e làm tương tự! Chúc bạn học tốt!!!
Bài 3:
a) Ta có: \(2^x\cdot4=128\)
\(\Leftrightarrow2^x=32\)
hay x=5
Vậy: x=5
b) Ta có: \(2^x-26=6\)
\(\Leftrightarrow2^x=32\)
hay x=5
Vậy: x=5
c) Ta có: \(27\cdot3^x=3^7\)
\(\Leftrightarrow3^x=\frac{3^7}{27}=\frac{3^7}{3^3}=3^4\)
hay x=4
Vậy: x=4
d) Ta có: \(3^x=81\)
\(\Leftrightarrow3^x=3^4\)
hay x=4
Vậy: x=4
e) Ta có: \(64\cdot4^x=4^5\)
\(\Leftrightarrow4^3\cdot4^x=4^5\)
\(\Leftrightarrow4^{x+3}=4^5\)
\(\Leftrightarrow x+3=5\)
hay x=2
Vậy: x=2
g) Ta có: \(49\cdot7^x=2401\)
\(\Leftrightarrow7^2\cdot7^x=7^4\)
\(\Leftrightarrow7^{x+2}=7^4\)
\(\Leftrightarrow x+2=4\)
hay x=2
Vậy: x=2
h) Ta có: \(3^4\cdot3^x=3^7\)
\(\Leftrightarrow3^{x+4}=3^7\)
\(\Leftrightarrow x+4=7\)
hay x=3
Vậy: x=3
(x-2)^20-(x-2)^18=0
(x-2)^18[(x-2)^2-1]=0
suy ra (x-2)^18=0;(x-2)^2-1=0
x-2=0 ;(x-2)^2=1 ;(x-2)^2=-1
x=2 ;x-2=1 ;x-2=-1
x=3 x=1
\(3^x+25=26\cdot2^2+2\cdot3^0\)
\(3^x+25=26\cdot4+2\cdot1\)
\(3^x+25=104+2\)
\(3^x+25=106\)
\(3^x=106-25\)
\(3^x=81\)
\(3^x=3^4\)
Vậy : \(x=4\)
\(27\cdot3^x=243\)
\(3^x=\frac{243}{27}\)
\(3^x=9\)
\(3^x=3^2\)
Vậy x = 2
\(3^x+25=26\times2^2+2\times3^0\)
\(\Rightarrow3^x+25=26\times4+2\times1\)
\(\Rightarrow3^x+25=104+2\)
\(\Rightarrow3^x+25=106\)
\(\Rightarrow3^x=81\left(\text{cùng bớt đi 25}\right)\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
(7x - 11)3 = 25.52 + 200
=> (7x - 11)3 = 800 + 200
=> (7x - 11)3 = 1000
=> (7x - 11)3 = 103
=> 7x - 11 = 10
=> 7x = 10 + 11
=> 7x = 21
=> x = 21 : 7 = 3
3x + 25 = 26.22 + 2.30
=> 3x + 25 = 104 + 2
=> 3x + 25 = 106
=> 3x = 106 - 25
=> 3x = 81
=> 3x = 34
=> x = 4
a)\(\left(7x-11\right)^3=2^5.5^2+200\) b) \(3^x+25=26.2^2+2.3^0\)
\(\left(7x-11\right)^3=32.25+200\) \(3^x+25=26.4+2.1\)
\(\left(7x-11\right)^3=800+200\) \(3^x+25=104+2\)
\(\left(7x-11\right)^3=1000\) \(3^x+25=106\)
\(\Rightarrow\left(7x-11\right)^3=10^3\) \(3^x=106-25\)
\(\Rightarrow7x-11=10\) \(3^x=81\)
\(7x=10+11\) \(3^x=3^4\)
\(x=\frac{21}{7}\) \(\Rightarrow x=4\)
\(x=3\) Vậy x = 4
Vậy x = 3
\(a,\left(7x-11\right)^3=2^5.5^2+200.\)
\(\left(7x+11\right)^3=32.25+200.\)
\(\left(7x+11\right)^3=800+200.\)
\(\left(7x-11\right)^3=1000.\)
\(\left(7x-11\right)^3=10^3.\)
\(\Rightarrow7x-11=10.\)
\(\Rightarrow x=\left(10+11\right):3=7\in Z.\)
Vậy.....
\(b,3^x+25=26.2^2+2.3^0.\)
\(3^x+25=26.4+2.\)
\(3^x+25=104+2.\)
\(3^x+25=106.\)
\(3^x=106-25.\)
\(3^x=81.\)
\(3^x=3^4\Rightarrow x=4\in Z.\)
Vậy.....
\(c,2^x+3.2=64.\)(có vấn đề).
\(d,5^{x+1}+5^x=750.\)
\(5^x.5^1+5^x+1=750.\)
\(5^x\left(5^1+1\right)=750.\)
\(5^x\left(5+1\right)=750.\)
\(5^x.6=750.\)
\(5^x=750:6.\)
\(5^x=125.\)
\(5^x=5^3\Rightarrow x=3\in Z.\)
Vậy.....
\(e,x^{15}=x.\)
\(\Rightarrow x\left(x^{14}-1\right)=0\Rightarrow\left\{{}\begin{matrix}x=0\\x=1\end{matrix}\right..\)
\(f,\left(x-5\right)^4=\left(x-5\right)^6.\)
\(\Leftrightarrow\left(x-5\right)^4-\left(x-5^6\right)=0.\)
\(\Leftrightarrow\left(x-5\right)^4\left[1-\left(x-5\right)^2\right]=0.\)
\(\Leftrightarrow\left(x-5\right)^4\left(1-x+5\right)\left(1+x-5\right)=0.\)
\(\Leftrightarrow\left(x-5\right)^4\left(6-x\right)\left(x-4\right)=0.\)
\(\Leftrightarrow\left(x-5\right)^4=0\Rightarrow x-5=0\Rightarrow x=5\in Z.\)
\(6-x=0\Rightarrow x=6\in Z.\)
\(x-4=0\Rightarrow x=4\in Z.\)
Vậy.....
`a) 27.3^x =243`
`3^x=243/27=9`
`3^x=3^2`
`=>x=2`
`b) 49.7^x =2401`
`7^x = 2401/49=49`
`7^x=7^2`
`=>x=2`
`c) 3^x +25 =26*2^2+2.3^0`
`3^x = 26.4+2.1-25 = 81`
`3^x =3^4`
`=>x=4`
\(e,27.3^x=243\\ \Leftrightarrow3^3.3^x=3^5\\ \Leftrightarrow3^{3+x}=3^5\\ \Rightarrow3+x=5\\ \Leftrightarrow x=2\\ g,49.7^x=2401\\ \Leftrightarrow7^2.7^x=7^4\\ \Leftrightarrow7^{2+x}=7^4\\ \Rightarrow2+x=4\\ \Leftrightarrow x=2\\ h,3^x+25=26.2^2+2.3^0\\ \Leftrightarrow3^x+25=26.4+2.1\\ \Leftrightarrow3^x=104+2-25\\ \Leftrightarrow3^x=81=3^4\\ Vậy:x=4\)