K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b, \(\left(x-5\right)\left(x-4\right)-\left(x+1\right)\left(x-2\right)=7\)

\(\Rightarrow x^2-9x+20-x^2+x+2=7\)

\(\Rightarrow-8x+22=7\)

\(\Rightarrow-8x=-15\)

\(\Rightarrow x=\frac{15}{8}\)

c, \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)-3\)

\(\Rightarrow3x^2-10x+8=3x^2-27x-3\)

\(\Rightarrow3x^2-10x-3x^2+27x=\left(-3\right)+\left(-8\right)\)

\(\Rightarrow17x=-11\)

\(\Rightarrow x=-\frac{11}{17}\)

d, \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)=6x\)

\(\Rightarrow x^3+3x^2+9x-3x^2-9x-27+5x-x^3=6x\)

\(\Rightarrow6x=-27\)

\(\Rightarrow x=-\frac{27}{6}\)

\(\Rightarrow x=-\frac{9}{2}\)

e, \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)

\(\Rightarrow3x^2-2x-5-3x^2-2x+1=x-4\)

\(\Rightarrow-4=x-4\)

\(\Rightarrow x=0\)

9 tháng 7 2019

b)    (x - 5)(x - 4) - (x + 1)(x - 2) = 7
<=> x2 - 9x + 20 - x2 + x + 2 - 7 = 0
<=> 8x - 15 = 0 <=> x = 15/8

c)    (3x - 4)(x - 2) = 3x(x - 9) - 3
<=> 3x2 - 10x + 8 = 3x2 - 27x - 3
<=> 17x = -11 <=> x = -11/17

d)    (x - 3)(x2 + 3x + 9) + x(5 - x2) = 6x
<=> x3 - 27 - x3 + 5x - 6x = 0
<=> x = -27

e)    (3x - 5)(x + 1) - (3x - 1)(x + 1) = x - 4
<=> (x + 1)(3x - 5 - 3x + 1) - x + 4 = 0
<=> -4x - 4 - x + 4 = 0 <=> x = 0

9 tháng 7 2019

b) \(\left(x-5\right)\left(x-4\right)-\left(x+1\right)\left(x-2\right)=7\)

\(\Leftrightarrow\) \(x^2-4x-5x+20-x^2+2x-x+2\)\(=7\)

\(\Leftrightarrow\) \(-8x+22=7\)

\(\Leftrightarrow\) x= \(\frac{-15}{8}\)

9 tháng 7 2019

c) \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)-3\)

\(\Leftrightarrow\)\(3x^2-6x-4x+8=3x^2-27x-3\)

\(\Leftrightarrow\) \(3x^2-3x^2-6x-4x+27x=-3-8\)

\(\Leftrightarrow\) \(17x=-11\)

\(\Leftrightarrow\) \(x=\frac{-11}{17}\)

4 tháng 7 2017

a, \(4x\left(x-5\right)-7x\left(x-4\right)+3x^2=12\)

\(\Leftrightarrow4x^2-20x-7x^2+28x+3x^2=12\)

\(\Leftrightarrow8x=12\)

\(\Leftrightarrow x=\dfrac{3}{2}\)

Vậy...

b, \(-3x\left(x-5\right)+5\left(x-1\right)+3x^2=4-x\)

\(\Leftrightarrow-3x^2+15x+5x-5+3x^2=4-x\)

\(\Leftrightarrow21x=9\)

\(\Leftrightarrow x=\dfrac{3}{7}\)

Vậy...

c, \(\left(x-5\right)\left(x-4\right)-\left(x+1\right)\left(x-2\right)=7\)

\(\Leftrightarrow x^2-9x+20-x^2+x+2=7\)

\(\Leftrightarrow-8x=-15\Leftrightarrow x=\dfrac{15}{8}\)

Vậy...

d, \(-\left(x+3\right)\left(x-4\right)+\left(x-1\right)\left(x+1\right)=10\)

\(\Leftrightarrow-x^2+x+12+x^2-1=10\)

\(\Leftrightarrow x=-1\)

Vậy...

e, \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)=6x\)

\(\Leftrightarrow x^3-27+5x-x^3=6x\)

\(\Leftrightarrow x=-27\)

Vậy...

4 tháng 7 2017

a) \(4x\left(x-5\right)-7x\left(x-4\right)+3x^2=12\)

\(4x^2-20x-7x^2+28x+3x^2-12=0\)

\(8x-12=0\)

\(4\left(2x-3\right)=0\)

\(2x-3=0\Rightarrow x=\dfrac{3}{2}\)

b) \(-3x\left(x-5\right)+5\left(x-1\right)+3x^2=4-x\)

\(-3x^2+15x+5x-5+3x^2-4+x=0\)

\(21x-9=0\)

\(3\left(7x-3\right)=0\)

\(\Rightarrow7x-3=0\Rightarrow x=\dfrac{3}{7}\)

c) \(\left(x-5\right)\left(x-4\right)-\left(x-1\right)\left(x-2\right)=7\)

\(x^2-4x-5x+20-x^2+2x+x-2-7=0\)

\(-6x+11=0\Rightarrow x=\dfrac{11}{6}\)

d) \(-\left(x-3\right)\left(x-4\right)+\left(x-1\right)\left(x+1\right)=10\)

\(-x^2+4x+3x-12+x^2-1-10=0\)

\(7x-23=0\)

\(x=\dfrac{23}{7}\)

e) \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)=6x\)

\(x^3-27+5x-x^3-6x=0\)

\(-x-27=0\Rightarrow x=-27\)

4 tháng 7 2017

a, \(-\left(x+3\right)\left(x-4\right)+\left(x+1\right)\left(x-1\right)=10\)

\(\Rightarrow-\left(x^2-4x+3x-12\right)+x^2-1=10\)

\(\Rightarrow-x^2+x+12+x^2-1=10\)

\(\Rightarrow x=10+1-12\Rightarrow x=-1\)

b, \(\left(2x-1\right)\left(x-2\right)-\left(x+3\right)\left(2x-7\right)=3\)

\(\Rightarrow2x^2-4x-x+2-\left(2x^2-7x+6x-21\right)=3\)

\(\Rightarrow2x^2-5x+2-2x^2+x+21=3\)

\(\Rightarrow-4x=3-21-2\Rightarrow-4x=-20\)

\(\Rightarrow x=5\)

Các câu còn lại làm tương tự! Phá ngoặc ra!

Chúc bạn học tốt!!!

17 tháng 2 2020

a) \(\left(3x-1\right)\left(x+3\right)=\left(2-x\right)\left(5-3x\right)\)

\(\Leftrightarrow3x^2+8x-3=3x^2-11x+10\)

\(\Leftrightarrow19x-13=0\)

\(\Leftrightarrow x=\frac{13}{19}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{13}{19}\right\}\)

b) \(\left(x+5\right)\left(2x-1\right)=\left(2x-3\right)\left(x+1\right)\)

\(\Leftrightarrow2x^2+9x-5=2x^2-x-3\)

\(\Leftrightarrow10x-2=0\)

\(\Leftrightarrow x=\frac{1}{5}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{1}{5}\right\}\)

c) \(\left(x+1\right)\left(x+9\right)=\left(x+3\right)\left(x+5\right)\)

\(\Leftrightarrow x^2+10x+9=x^2+8x+15\)

\(\Leftrightarrow2x-6=0\)

\(\Leftrightarrow x=3\)

Vậy tập nghiệm của phương trình là \(S=\left\{3\right\}\)

17 tháng 2 2020

d) \(\left(3x+5\right)\left(2x+1\right)=\left(6x-2\right)\left(x-3\right)\)

\(\Leftrightarrow6x^2+13x+5=6x^2-20x+6\)

\(\Leftrightarrow33x-1=0\)

\(\Leftrightarrow x=\frac{1}{33}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{1}{33}\right\}\)

e) \(\left(x+2\right)^2+2\left(x-4\right)=\left(x-4\right)\left(x-2\right)\)

\(\Leftrightarrow x^2+4x+4+2x-8=x^2-6x+8\)

\(\Leftrightarrow6x-4=-6x+8\)

\(\Leftrightarrow12x-12=0\)

\(\Leftrightarrow x=1\)

Vậy tập nghiệm của phương trình là \(S=\left\{1\right\}\)

f) \(\left(x+1\right)\left(2x-3\right)-\left(3x-2\right)=2\left(x-1\right)^2\)

\(\Leftrightarrow2x^2-x-3-3x+2=2\left(x^2-2x+1\right)\)

\(\Leftrightarrow2x^2-4x-1=2x^2-4x+2\)

\(\Leftrightarrow-1=2\)(ktm)

Vậy tập nghiệm của phương trình là \(S=\varnothing\)

2 tháng 7 2018

(x+2)(x+3)-(x-2)(x+5)=0

=> x2+5x+6-x2-3x+10=0

=>2x+16=0 

 =>2x=-16

=>x=-8

18 tháng 9 2018

a) \(3\left(x^2-2x+1\right)+x\left(2-3x\right)=7\)

\(\Rightarrow3x^2-6x+3+2x-3x^2=7\)

\(\Rightarrow-4x+3=7\)

\(\Rightarrow-4x+3-7=0\)

\(\Rightarrow-4x-4=0\)

\(\Rightarrow-4\left(x+1\right)=0\)

\(\Rightarrow x+1=0\)

\(\Rightarrow x=-1\)

b) \(5\left(x-2\right)+2\left(x+3\right)=10\)

\(\Rightarrow5x-10+2x+6=10\)

\(\Rightarrow7x-4=10\)

\(\Rightarrow7x=10+4=14\)

\(\Rightarrow x=\dfrac{14}{7}=2\)

c) \(\left(x+1\right)\left(-3\right)+5\left(x-4\right)=-3\)

\(\Rightarrow-3x-3+5x-20=-3\)

\(\Rightarrow2x-23=-3\)

\(\Rightarrow2x=-3+23=20\)

\(\Rightarrow x=\dfrac{20}{2}=10\)

d) \(2\left(x-1\right)-x\left(3-x\right)=x^2\)

\(\Rightarrow2x-2-3x+x^2=x^2\)

\(\Rightarrow-x-2+x^2-x^2=0\)

\(\Rightarrow-x-2=0\)

\(\Rightarrow-x=2\)

\(\Rightarrow x=-2\)

đ) \(3x\left(x+5\right)-2\left(x+5\right)=3x^2\)

\(\Rightarrow3x^2+15x-2x-10=3x^2\)

\(\Rightarrow3x^2-3x^2+13x-10=0\)

\(\Rightarrow13x-10=0\)

\(\Rightarrow13x=10\)

\(\Rightarrow x=\dfrac{10}{13}\)

e) \(4x\left(x+2\right)+x\left(4-x\right)=3x^2+12\)

\(\Rightarrow4x^2+8x+4x-x^2=3x^2+12\)

\(\Rightarrow3x^2+12x=3x^2+12\)

\(\Rightarrow3x^2+12x-3x^2-12=0\)

\(\Rightarrow12\left(x-1\right)=0\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

f) \(\dfrac{1}{3}x\left(3x+6\right)-x\left(x-5\right)=9\)

\(\Rightarrow x^2+2x-x^2+5x=9\)

\(\Rightarrow7x=9\)

\(\Rightarrow x=\dfrac{9}{7}\)

a) Ta có: \(\left(x+5\right)\left(2x-1\right)=\left(2x-3\right)\left(x+1\right)\)

\(\Leftrightarrow\left(x+5\right)\left(2x-1\right)-\left(2x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow2x^2-x+10x-5-\left(2x^2+2x-3x-3\right)=0\)

\(\Leftrightarrow2x^2+9x-5-2x^2+x+3=0\)

\(\Leftrightarrow10x-2=0\)

hay 10x=2

\(\Leftrightarrow x=\frac{1}{5}\)

Vậy: \(x=\frac{1}{5}\)

b) Ta có: \(\left(x+1\right)\left(x+9\right)=\left(x+3\right)\left(x+5\right)\)

\(\Leftrightarrow x^2+9x+x+9=x^2+5x+3x+15\)

\(\Leftrightarrow x^2+10x+9-x^2-8x-15=0\)

\(\Leftrightarrow2x-6=0\)

hay 2x=6

\(\Leftrightarrow x=3\)

Vậy: x=3

c) Ta có: \(\left(3x+5\right)\left(2x+1\right)=\left(6x-2\right)\left(x-3\right)\)

\(\Leftrightarrow6x^2+3x+10x+5=6x^2-18x-2x+6\)

\(\Leftrightarrow6x^2+13x+5=6x^2-20x+6\)

\(\Leftrightarrow6x^2+13x+5-6x^2+20x-6=0\)

\(\Leftrightarrow33x-1=0\)

\(\Leftrightarrow33x=1\)

hay \(x=\frac{1}{33}\)

Vậy: \(x=\frac{1}{33}\)

d) Ta có: \(\left(x-2\right)\left(3x+5\right)=\left(2x-4\right)\left(x+1\right)\)

\(\Leftrightarrow3x^2+5x-6x-10=2x^2+2x-4x-4\)

\(\Leftrightarrow3x^2-x-10=2x^2-2x-4\)

\(\Leftrightarrow3x^2-x-10-2x^2+2x+4=0\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow x^2+3x-2x-6=0\)

\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{-3;2\right\}\)

đ) Ta có: \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left[\left(3x-1\right)-\left(2x-3\right)\right]=0\)

\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{-\frac{1}{3};-2\right\}\)

e) Ta có: \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(2x+5+x-5\right)=0\)

\(\Leftrightarrow\left(x-4\right)\cdot3x=0\)

\(3\ne0\)

nên \(\left[{}\begin{matrix}x-4=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

Vậy: \(x\in\left\{0;4\right\}\)

AH
Akai Haruma
Giáo viên
24 tháng 2 2020

a) $(x+5)(2x-1)=(2x-3)(x+1)$

$\Leftrightarrow 2x^2+9x-5=2x^2-x-3$

$\Leftrightarrow 10x=2\Rightarrow x=\frac{1}{5}$

b)

$(x+1)(x+9)=(x+3)(x+5)$

$\Leftrightarrow x^2+10x+9=x^2+8x+15$

$\Leftrightarrow 2x=6\Rightarrow x=3$

c)

$(3x+5)(2x+1)=(6x-2)(x-3)$

$\Leftrightarrow 6x^2+13x+5=6x^2-20x+6$

$\Leftrightarrow 33x=1\Rightarrow x=\frac{1}{33}$

5 tháng 7 2018

1) a) \(\left(3x-1\right)\left(9x^2+3x+1\right)-4x\left(x-5\right)\)

\(=27x^3+9x^2+3x-9x^2-3x-1-4x^2+20x\)

\(=27x^3+\left(9x^2-9x^2-4x^2\right)+\left(3x-3x+20x\right)+\left(-1\right)\)

\(=27x^3-4x^2+20x-1\)

b)\(\left(7x+2\right)\left(3-4x\right)-\left(x+3\right)\left(x^2-3x+9\right)\)

\(=21x-28x^2+6-8x-x^3+3x^2-9x-3x^2+9x-27\)

\(=\left(21x-8x-9x+9x\right)+\left(-28x^2+3x^2-3x^2\right)\)\(+\left(6-27\right)\)\(+\left(-x^3\right)\)

\(=13x-28x^2-21-x^3\)

c)\(\left(4x+3\right)\left(4x-3\right)-\left(2-x\right)\left(4+2x+x^2\right)\)

\(=16x^2-12x+12x-9-8-4x-2x^2+4x+2x^2+x^3\)

\(=\left(16x^2-2x^2+2x^2\right)+\left(-12x+12x-4x+4x\right)\)\(+\left(-9-8\right)\)\(+x^3\)

\(=16x^2-17+x^3\)

d)\(\left(3x-8\right)\left(-5x+6\right)-\left(4x+1\right)\left(3x-2\right)\)

\(=-15x^2+18x+40x-48-12x^2+8x-3x+2\)

\(=\left(-15x^2-12x^2\right)+\left(18x+40x+8x-3x\right)\)\(+\left(-48+2\right)\)

\(=-27x^2+63x-46\)

e)\(\left(3x-6\right)4x-2x\left(3x+5\right)-4x^2\)

\(=12x^2-24x-6x^2-10x-4x^2\)

\(=\left(12x^2-6x^2-4x^2\right)+\left(-24x-10x\right)\)

\(=2x^2-34x\)

f)\(\left(5x-6\right)\left(6x-5\right)-x\left(3x+10\right)\)

\(=30x^2-25x-36x+30-3x^2-10x\)

\(=\left(30x^2-3x^2\right)+\left(-25x-36x-10x\right)+30\)

\(=27x^2-71x+30\)

5 tháng 7 2018

2) a)\(x\left(x+3\right)-x^2=6\)

\(\Rightarrow x^2+3x-x^2=6\)

\(\Rightarrow\left(x^2-x^2\right)+3x=6\)

\(\Rightarrow3x=6\)

\(\Rightarrow x=2\)

Vậy x=2

b) \(2x\left(x-5\right)+x\left(-2x-1\right)=6\)

\(\Rightarrow2x^2-10x-2x^2-x=6\)

\(\Rightarrow\left(2x^2-2x^2\right)+\left(-10x-x\right)=6\)

\(\Rightarrow-11x=6\)

\(\Rightarrow x=-\dfrac{6}{11}\)

\(\)Vậy \(x=-\dfrac{6}{11}\)

c) x(x+5)-(x+1)(x-2)=7

\(\Rightarrow x^2+5x-x^2+2x-x+2=7\)

\(\Rightarrow\left(x^2-x^2\right)+\left(5x+2x-x\right)=7-2\)

\(\Rightarrow6x=5\)

\(\Rightarrow x=\dfrac{5}{6}\)

Vậy x=\(\dfrac{5}{6}\)

d)\(\left(3x+4\right)\left(6x-3\right)-\left(2x+1\right)\left(9x-2\right)=10\)

\(\Rightarrow18x^2-9x+24x-12-18x^2+4x-9x+2=10\)

\(\Rightarrow\left(18x^2-18x^2\right)+\left(-9x+24x+4x-9x\right)+\left(-12+2\right)=10\)

\(\Rightarrow10x-10=10\)

\(\Rightarrow10x=20\)

\(\Rightarrow x=2\)

Vậy x=2