Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Bài này tớ làm không đảm bảo đúng 100% nên nếu có gì sai sót mong bạn thông cảm
a) Nếu F(x) = G(x)
\(\Rightarrow ax+b-mx-n=0\)
\(\Rightarrow x\left(a-m\right)+\left(b-n\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x\left(a-m\right)=0\\b-n=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-m=0\\b=n\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=m\\b=n\end{matrix}\right.\)
b) Nếu F(x) = G(x)
\(\Rightarrow ax^2+bx+c-mx^2-nx-p=0\)
\(\Rightarrow x^2\left(a-m\right)+x\left(b-n\right)+\left(c-p\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x^2\left(a-m\right)=0\\x\left(b-n\right)=0\\c-p=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-m=0\\b-n=0\\c-p=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=m\\b=n\\c=p\end{matrix}\right.\)
Bài 2:
a) \(A\left(x\right)=0\)
\(\Leftrightarrow2\left(\dfrac{1}{3}x-\dfrac{1}{2}\right)-\dfrac{1}{2}\left(3-x\right)=0\)
\(\Leftrightarrow2.\dfrac{1}{3}x-2.\dfrac{1}{2}-\dfrac{1}{2}.3+\dfrac{1}{2}x=0\)
\(\Leftrightarrow\dfrac{2}{3}x-1-\dfrac{3}{2}+\dfrac{1}{2}x=0\)
\(\Leftrightarrow\dfrac{7}{6}x-\dfrac{5}{2}=0\)
\(\Leftrightarrow\dfrac{7}{6}x=\dfrac{5}{2}\)
\(\Leftrightarrow x=\dfrac{15}{7}\)
b) Nếu B (x) = 0
\(\Leftrightarrow\left(2x-5\right)\left(x^2-\dfrac{9}{16}\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\x^2-\dfrac{9}{16}=0\\x^2+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=5\\x^2=\dfrac{9}{16}\\x^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{3}{4};x=-\dfrac{3}{4}\\x=1;x=-1\end{matrix}\right.\)
c) Nếu C(x) = 0
\(\Leftrightarrow x^3-2x=0\)
\(\Leftrightarrow x\left(x^2-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2};x=-\sqrt{2}\end{matrix}\right.\)
d) Nếu D(x) = 0
\(\Leftrightarrow9x^2+16=0\)
\(\Leftrightarrow9x^2=-16\)
\(\Leftrightarrow x^2=-\dfrac{16}{9}\)
Vậy không tồn tại x thỏa mãn
e) Nếu M(x) = 0
\(\Leftrightarrow x^2+4x+4=0\)
\(\Leftrightarrow\left(x+2\right)^2=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
\(\left(5-xy\right)^2=25-10xy+x^2y^2\)
\(\left(3-2y\right)^2=9-12y+4y^2\)
\(\left(3+x^2\right)\left(3-x^2\right)=9-x^4\)
\(\left(5x-2y\right)\left(25x+10xy+4y^2\right)=\left(5x-2y\right)\left(5x+2y\right)=25x^2-4y^2\)\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)=\left(3x+y\right)\left(3x-y\right)=9x^2-y^2\)
\(a.2^{x-1}=16\)
\(2^{x-1}=2^4\)
\(\Rightarrow x-1=4\)
\(x=5\)
\(b.\left(x-1\right)^2=5^2\)
\(\Rightarrow\orbr{\begin{cases}x-1=5\\x-1=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)
\(c.\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
\(\Rightarrow x-\frac{1}{2}=\frac{1}{3}\)
\(x=\frac{5}{6}\)
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
a, (x - 2)2 = 1
(x - 2)2 = -12
=> x - 2 = -1
x = -1 + 2
x = -1
b, (2x - 1)3 = -27
(2x - 1)3 = -33
=> 2x - 1 = -3
2x = -3 + 1
2x = -2
x = -2 : 2
x = -1
a) (x-2)^2 = 1 = 1^2 = (-1)^2
=> x-2 = 1 => x = 3
x - 2 = -1 => x = 1
.KL:..
b) (2x-1)^3 = -27 = (-3)^3
=> 2x-1 = -3 => 2x = -2 => x = -1
c)16/2^n = 1
2^4 : 2^n = 1
24-n = 1 = 20
=> 4-n = 0 => n = 4
c) (x-1/2)^3 = 1/27 = 1/3^3
=>x-1/2 = 1/3
x = 5/6
d) (x+1/2)^2 = 4/25 = (2/5)^2 = (-2/5)^2
...
rùi bn tự lm như phần a nha
e) (x-1)x+2 = (x-1)x+6
=> (x-1)x+2 - (x-1)x+6 = 0
(x-1)x+2.[1-(x-1)4 ] = 0
=> (x-1)x+2 = 0 => x-1 = 0 => x = 1
1-(x-1)4 = 0 => (x-1)^4 = 1 => x -1 = 1 => x = 2
x -1 = -1 => x = 0
KL:...
f) (x-2)2 + (y-3)2 = 0
=> (x-2)^2 = 0 => x - 2=0 => x = 2
(y-3)^2=0 => y-3 = 0 => y =3
g) 5(x-2).(x+3) = 1 = 50
=> (x-2).(x+3) = 0
=> x-2 = 0 => x = 2
x+3 = 0 => x = -3
KL:...