Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{13+x}{20}\) = \(\dfrac{3}{4}\)
13 + \(x\) = 20 \(\times\) \(\dfrac{3}{4}\)
13 + \(x\) = 15
\(x\) = 15 - 13
\(x\) = 2
Cách khác :
\(\dfrac{13+x}{20}=\dfrac{3}{4}\)
\(\dfrac{13+x}{20}=\dfrac{15}{20}\)
\(13+x=15\)
\(x=15-13\)
\(x=2\)
a, \(\dfrac{7}{8}\) \(\times\) \(\dfrac{3}{13}\) + \(\dfrac{4}{9}\) \(\times\) \(\dfrac{4}{13}\)
= \(\dfrac{1}{13}\) \(\times\)( \(\dfrac{21}{8}\) + \(\dfrac{16}{9}\))
= \(\dfrac{1}{13}\) \(\times\)( \(\dfrac{189}{72}\) + \(\dfrac{128}{72}\))
= \(\dfrac{1}{13}\) \(\times\) \(\dfrac{317}{73}\)
= \(\dfrac{317}{949}\)
b, \(\dfrac{6}{5}\) + \(\dfrac{7}{3}\) + \(\dfrac{8}{9}\)
= \(\dfrac{54}{45}\) + \(\dfrac{105}{45}\) + \(\dfrac{40}{45}\)
= \(\dfrac{199}{45}\)
c, 23 : \(\dfrac{5}{14}\) + \(\dfrac{6}{7}\) + \(\dfrac{4}{9}\)
= \(\dfrac{322}{5}\) + \(\dfrac{6}{7}\) + \(\dfrac{4}{9}\)
= \(\dfrac{20286}{315}\) + \(\dfrac{270}{315}\) + \(\dfrac{140}{315}\)
= \(\dfrac{20696}{315}\)
d, 4\(\dfrac{1}{4}\) + 7\(\dfrac{3}{7}\) - 2\(\dfrac{4}{17}\)
= 4 + \(\dfrac{1}{4}\) + 7 + \(\dfrac{3}{7}\) - 2 - \(\dfrac{4}{17}\)
= (4+7-2) + (\(\dfrac{1}{4}\) + \(\dfrac{3}{7}\) - \(\dfrac{4}{17}\))
= 9 + \(\dfrac{119}{476}\) + \(\dfrac{204}{476}\) - \(\dfrac{112}{476}\)
= 9\(\dfrac{211}{476}\) = \(\dfrac{4495}{476}\)
e, 8 - (9\(\dfrac{2}{11}\) + \(\dfrac{8}{33}\))
= 8 - 9 - \(\dfrac{2}{11}\) - \(\dfrac{8}{33}\)
= -1 - \(\dfrac{2}{11}\) - \(\dfrac{8}{33}\)
= \(\dfrac{-33}{33}\) - \(\dfrac{-6}{33}\) - \(\dfrac{8}{33}\)
= - \(\dfrac{47}{33}\)
a; A = \(\dfrac{4026\times2014+4030}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2014+2015\right)}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2016-2013\times2+2015\right)}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2016-4026+2015\right)}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2016-2011\right)}{2013\times2016-2011}\)
A = 2
=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007
=2008/12
=502/3
A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)
A = ( 1 + \(\dfrac{1}{12}\)) \(\times\) ( 1 + \(\dfrac{1}{13}\)) \(\times\) ( 1 + \(\dfrac{1}{14}\)) \(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))
A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)
A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)
A = 1 \(\times\) \(\dfrac{502}{3}\)
A = \(\dfrac{502}{3}\)
a) \(\frac{13+x}{20}=\frac{3}{4}\)
\(\Rightarrow\frac{13+x}{20}=\frac{15}{20}\)
\(\Rightarrow13+x=15\)
\(\Rightarrow\) \(x=15-13\)
\(\Rightarrow\)\(x=2\)
b)\(\frac{23-x}{25}=\frac{4}{5}\)
\(\Rightarrow\frac{23-x}{25}=\frac{20}{25}\)
\(\Rightarrow23-x=20\)
\(\Rightarrow\) \(x=23-20\)
\(\Rightarrow\) \(x=3\)
a, 13+x/20= 3/4
Suy ra: ( 13+x). 4= 20.3
Suy ra: (13+x).4=60
Suy ra: 13+x=60:4
Suy ra: 13+x=15
Suy ra: x=15-13
Suy ra: x=2
Vậy x=2
Ta có công thức tổng quát:
\(\dfrac{k}{n\cdot\left(n+k\right)}=\dfrac{1}{n}-\dfrac{1}{n+k}\)
\(a,A=\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{x\left(x+3\right)}\\ =\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\dfrac{x-2}{5\left(x+3\right)}\\ =\dfrac{x-2}{15\left(x+3\right)}\)
Theo đề bài ta có:
\(A=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{15\left(x+3\right)}=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{303}{308}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{305-2}{305+3}\\ \Rightarrow x=305\)
Bài 1: Ta có: \(4\dfrac{3}{5}+\dfrac{7}{10}< X< \dfrac{20}{3}\)
\(\dfrac{23}{5}+\dfrac{7}{10}< X< \dfrac{20}{3}\)
\(\dfrac{138}{30}< X< \dfrac{200}{3}\)
\(\Rightarrow X\in\left\{\dfrac{160}{30};\dfrac{161}{30};\dfrac{162}{30};...;\dfrac{198}{30};\dfrac{199}{30}\right\}\)
Bài 2: \(X-2019\dfrac{2}{13}=3\dfrac{7}{26}+4\dfrac{7}{52}\)
\(\Rightarrow X-\dfrac{26249}{13}=\dfrac{85}{26}+\dfrac{215}{52}\)
\(\Rightarrow X-\dfrac{26249}{13}=\dfrac{385}{52}\)
\(\Rightarrow X=\dfrac{105381}{52}\)
\(a,5x\dfrac{7}{3}=\dfrac{5}{1}x\dfrac{7}{3}=\dfrac{35}{3};b,\dfrac{13}{4}:7=\dfrac{13}{4} :\dfrac{7}{1}=\dfrac{13}{4}x\dfrac{1}{7}=\dfrac{13}{28}\)
1. Tính
\(a,5\times\dfrac{7}{3}=\dfrac{35}{3}\)
\(b,\dfrac{13}{4}:7=\dfrac{13}{4}\times\dfrac{1}{7}=\dfrac{13}{28}\)
2. Tính
\(a,\dfrac{3}{7}+\dfrac{2}{5}+\dfrac{3}{4}\)
\(=\dfrac{15}{35}+\dfrac{14}{35}+\dfrac{3}{4}\)
\(=\dfrac{29}{35}+\dfrac{3}{4}\)
\(=\dfrac{116}{140}+\dfrac{105}{140}\)
\(=\dfrac{221}{140}\)
\(b,\dfrac{9}{7}-\dfrac{5}{11}\times\dfrac{11}{7}\)
\(=\dfrac{9}{7}-\dfrac{55}{77}\)
\(=\dfrac{99}{77}-\dfrac{55}{77}\)
\(=\dfrac{44}{77}=\dfrac{4}{7}\)
\(c,\dfrac{3}{5}\times\dfrac{5}{7}+\dfrac{4}{7}\)
\(=\dfrac{3}{5}\times\left(\dfrac{5}{7}+\dfrac{4}{7}\right)\)
\(=\dfrac{3}{5}\times\dfrac{9}{7}\)
\(=\dfrac{27}{35}\)
\(d,\dfrac{7}{9}\times\dfrac{2}{5}:\dfrac{3}{11}\)
\(=\dfrac{14}{45}:\dfrac{3}{11}\)
\(=\dfrac{14}{45}\times\dfrac{11}{3}\)
\(=\dfrac{154}{135}\)
\(e,\dfrac{9}{7}+\dfrac{2}{3}-\dfrac{1}{4}\)
\(=\dfrac{27}{21}+\dfrac{14}{21}-\dfrac{1}{4}\)
\(=\dfrac{41}{21}-\dfrac{1}{4}\)
\(=\dfrac{164}{84}-\dfrac{21}{84}\)
\(=\dfrac{143}{84}\)
\(g,\dfrac{4}{9}:\dfrac{3}{5}\times\dfrac{2}{11}\)
\(=\dfrac{4}{9}\times\dfrac{5}{3}\times\dfrac{2}{11}\)
\(=\dfrac{20}{27}\times\dfrac{2}{11}\)
\(=\dfrac{40}{297}\)
\(h,\dfrac{7}{2}-\dfrac{3}{10}:\dfrac{2}{5}\)
\(=\left(\dfrac{7}{2}-\dfrac{3}{10}\right):\dfrac{2}{5}\)
\(=\left(\dfrac{35}{10}-\dfrac{3}{10}\right):\dfrac{2}{5}\)
\(=\dfrac{32}{10}:\dfrac{2}{5}\)
\(=\dfrac{16}{5}\times\dfrac{5}{2}\)
\(=\dfrac{80}{10}=8\)
a) \(\dfrac{2}{3}+\dfrac{3}{5}=\dfrac{10}{15}+\dfrac{9}{15}=\dfrac{19}{15}\)
a) \(\dfrac{7}{12}-\dfrac{2}{7}+\dfrac{1}{12}=\dfrac{2}{3}-\dfrac{2}{7}=\dfrac{14}{21}-\dfrac{6}{21}=\dfrac{8}{21}\)
`(13+x)/20 = 3/4`
`(13+x) xx4=3xx20`
`(13+x)xx4=60`
`13+x=60:4`
`13+x=15`
`x=15-13`
`x=2`
__
`(23-x)/25 =4/5`
`(23-x)xx5=4xx25`
`(23-x)xx5=100`
`23-x=100:5`
`23-x=20`
`x=23-20`
`x=3`
Giỏi v