K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

a) làm mẫu cho cả phần b lun

 \(|2x-5|+|2,5-x|=0\left(1\right)\)

Ta có: \(2x-5=0\Leftrightarrow x=\frac{5}{2}\)

          \(2,5-x=0\Leftrightarrow x=2,5=\frac{5}{2}\)

Lập bảng xét dấu :

2x-5 2,5-x 5/2 0 0 - - + +

+) Với \(x< \frac{5}{2}\Rightarrow\hept{\begin{cases}2x-5< 0\\2,5-x< 0\end{cases}\Rightarrow}\hept{\begin{cases}|2x-5|=5-2x\\|2,5-x|=x-2,5\end{cases}}\left(2\right)\)

Thay (2) vào (1) ta được :

\(5-2x+x-2,5=0\)

\(-x+\frac{5}{2}=0\)

\(x=\frac{5}{2}\)( loại ) 

+) Với \(x\ge\frac{5}{2}\Rightarrow\hept{\begin{cases}2x-5\ge0\\2,5-x\ge0\end{cases}\Rightarrow}\hept{\begin{cases}|2x-5|=2x-5\\|2,5-x|=2,5-x\end{cases}}\left(3\right)\)

Thay (3) vào (1) ta được :

\(2x-5+2,5-x=0\)

\(x-\frac{5}{2}=0\)

\(x=\frac{5}{2}\)( chọn )

Vậy \(x=\frac{5}{2}\)

11 tháng 8 2019

a) |2x - 5| + |2,5 - x| = 0

2x - 5 = 0 hoặc 2,5 - x = 0

2x = 0 + 5         -x = 0 - 2,5

2x = 5               -x = -2,5

x = 2,5               x = 2,5

=> x = 2,5

b) |x - 1,5| + |x + 3| = 0

x - 1,5 = 0 hoặc x + 3 = 0

x = 0 + 1,5         x = 0 - 3

x = 1,5               x = -3

=> x = 1,5 hoặc x = -3

c) (5x - 2)2 = 1

(5x - 2)2 = 12

5x - 2 = 1; -1

5x - 2 = 1 hoặc 5x - 2 = -1

5x = 1 + 2         5x = -1 + 2

5x = 3               5x = 1

x = 3/5              x = 1/5

=> x = 3/5 hoặc x = 1/5

d) (4x - 1)3 + 7 = -20

(4x - 1)3 = -20 - 7

(4x - 1)3 = -27

(4x - 1)3 = (-3)3

4x - 1 = -3

4x = -3 + 1

4x = -2

x = -2/4 = -1/2

2 tháng 4 2019

Câu 1: Tìm nghiệm của các đa thức:

1. P(x) = 2x -3

⇒2x-3=0

↔2x=3

↔x=\(\frac{3}{2}\)

2. Q(x) = −12−12x + 5

↔-12-12x+5=0

↔-12x=0+12-5

↔-12x=7

↔x=\(\frac{7}{-12}\)

3. R(x) = 2323x + 1515

↔2323x+1515=0

↔2323x=-1515

↔x=\(\frac{-1515}{2323}\)

4. A(x) = 1313x + 1

1313x + 1=0

↔1313x=-1

↔x=\(\frac{-1}{1313}\)

5. B(x) = −34−34x + 1313

−34−34x + 1313=0

↔-34x=0+34-1313

↔-34x=-1279

↔x=\(\frac{1279}{34}\)

Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4

Giải :cho x2 - 6x + 8 là f(x)

có:f(2)=22 - 6.2 + 8

=4-12+8

=0⇒x=2 là nghiệm của f(x)

có:f(4)=42 - 6.4 + 8

=16-24+8

=0⇒x=4 là nghiệm của f(x)

Câu 3: Tìm nghiệm của các đa thức sau:

1.⇒ (2x - 4) (x + 1)=0

↔2x-4=0⇒2x=4⇒x=2

x+1=0⇒x=-1

-kết luận:x=2 vàx=-1 là nghiệm của A(x)

2. ⇒(-5x + 2) (x-7)=0

↔-5x + 2=0⇒-5x=-2⇒

x-7=0⇒x=7

-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)

3.⇒ (4x - 1) (2x + 3)=0

⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)

2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)

-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)

4. ⇒ x2- 5x=0

↔x.x-5.x=0

↔x.(x-5)=0

↔x=0

x-5=0⇒x=5

-kết luận:x=0 và x=5 là nghiệm của D(x)

5. ⇒-4x2 + 8x=0

↔-4.x.x+8.x=0

⇒x.(-4x+x)=0

⇒x=0

-4x+x=0⇒-3x=0⇒x=0

-kết luận:x=0 là nghiệm của E(x)

Câu 4: Tính giá trị của:

1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2

-X=1⇒f(x) =4

-X=0⇒f(x) =7

-X=2⇒f(x) =89

2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2

-X=-1⇒G(x) =-14

-X=0⇒G(x) =2

-X=1⇒G(x) =20

-X=2⇒G(x) =43

24 tháng 7 2019

Tên chữ Cam là sao

24 tháng 7 2019

Bài 1:

a) -6x + 3(7 + 2x)

= -6x + 21 + 6x

= (-6x + 6x) + 21

= 21

b) 15y - 5(6x + 3y)

= 15y - 30 - 15y

= (15y - 15y) - 30

= -30

c) x(2x + 1) - x2(x + 2) + (x3 - x + 3)

= 2x2 + x - x3 - 2x2 + x3 - x + 3

= (2x2 - 2x2) + (x - x) + (-x3 + x3) + 3

= 3

d) x(5x - 4)3x2(x - 1) ??? :V

Bài 2:

a) 3x + 2(5 - x) = 0

<=> 3x + 10 - 2x = 0

<=> x + 10 = 0

<=> x = -10

=> x = -10

b) 3x2 - 3x(-2 + x) = 36

<=> 3x2 + 2x - 3x2 = 36

<=> 6x = 36

<=> x = 6

=> x = 5

c) 5x(12x + 7) - 3x(20x - 5) = -100

<=> 60x2 + 35x - 60x2 + 15x = -100

<=> 50x = -100

<=> x = -2

=> x = -2

Bài 1:

Đề sai bạn ơi, phải là A(x)=x3-2x2+x-5

a, \(A\left(x\right)+B\left(x\right)=x^3-2x^2+x-5-x^3+2x^2+3x-9\)\(=4x-16\)

\(A\left(x\right)-B\left(x\right)=x^3-2x^2+x-5+x^3-2x^2-3x+9\)\(=2x^3-4x^2-2x+4\)

b, \(A\left(x\right)+B\left(x\right)=4x-16=4\left(x-4\right)\)\(\Rightarrow x=4\)

Vậy nghiệm của A(x)+B(x) là 4

Bài 2:

a, \(C\left(x\right)=-8x^4+5x^4+2x^3-4x^3+x^2+x+5\)\(=-3x^4-2x^3+x^2+x+5\)

\(D\left(x\right)=3,5+x^4-4x^3-4x^3+7-2x^4-3x^5\)\(=-3x^5+x^4-2x^4-4x^3-4x^3+3.5+7\)

\(=-3x^5-x^4-8x^3+10,5\)

b, \(C\left(x\right)+D\left(x\right)=\)\(-3x^4-2x^3+x^2+x+5\)\(-3x^5-x^4-8x^3+10,5\)\(=-3x^5-4x^4-10x^3+x^2+x+15,5\)

\(Q\left(x\right)=\)\(C\left(x\right)-D\left(x\right)=\)\(-3x^4-2x^3+x^2+x+5\)\(+3x^5+x^4+8x^3-10,5\)

\(=3x^5-2x^4+6x^3+x^2+x-5,5\)

c, \(D\left(x\right)=\)\(-3x^5-x^4-8x^3+10,5\)(not ra)

20 tháng 4 2017

(5x+2)(x-7)=0

suy ra 5x+2=0 hoặc x-7=0

5x = -2

x = -2/5 hoặc x=7

20 tháng 4 2017

\(x^2-x-6=0\Rightarrow x^2-2x+3x-6\\ \Rightarrow x\left(x-2\right)+3\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+3\right)=0\)

hay x-2=0 hoặc x+3 = 0

vậy x = 2 hoặc x = -3

4 tháng 10 2019

a)(2x-3)2=1<=> \(\orbr{\begin{cases}2x-3=1\\2x-3=-1\end{cases}< =>\orbr{\begin{cases}2x=4\\2x=2\end{cases}}}\)\(< =>\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

x=2 =>22.52=20y.5y <=>100 = 100y <=> y=1

x=1 => 2.5= 20y.5y <=>10=100y <=>y = 1/2

b)(4x-3)2+(y2-9)2\(\ge0\)

dấu = sảy ra khi \(\hept{\begin{cases}4x-3=0\\y^2-9=0\end{cases}< =>\hept{\begin{cases}4x=3\\y^2=9\end{cases}}}\)\(\hept{\begin{cases}x=\frac{3}{4}\\y=\pm3\end{cases}}\)

c) <=> (y-5)8 \(\le-\left(x+4\right)^7\)     (1)

(y-5)8 >=0 với mọi y nên -(x+4)7 \(\ge\left(y-5\right)^8\ge0\)<=> (x+4)7\(\le0< =>x+4\le0< =>x\le-4\)

Khi đó (1) <=> y-5\(\le\sqrt[8]{-\left(x+4\right)^7}\) <=> y\(\hept{\begin{cases}y\le5-\sqrt[8]{-\left(x+4\right)^7}\\x\le-4\end{cases}}\) 

8 tháng 8 2016

(4x - 9) (2,5 + 2/3x)=0 
=> 4x-9 = 0 hoặc 2,5 +2/3x = 0 
=> 4x = 9 hoặc 2/3x = -2,5 
=> x = 9/4 hoặc x = -7,5/2 
kết luận : vậy x thuộc {9/4; -7,5/2} 

(x - 5)2 = ( 1 - 3x)2

=> x-5 = 1-3x 
=> x-5+3x = 1 
=>4x-5 =1 
=> 4x=6
=> x=3/2
|x|=3 

=> X=3 hoặc x=-3 

3| x+1| - 2=1 
=> 3lx+1l = 3 
=> lx+1l =1 
=> x+1 = 1 hoặc x+1= -1 
=> x=0 hoặc x = -2 
3|x + 1| + 2=1 
=> 3lx+1l = -1 
=> lx+1l = -1/3 
vô lý vì giá trị tuyệt đối của 1 số luôn luôn lớn hơn hoặc bằng 0 
=> x thuộc rỗng
 

11 tháng 8 2020

3)  tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2

\(\Rightarrow M\left(x\right)=x^2-mx+2\)

\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)

\(\Leftrightarrow1-m\left(-1\right)=-2\)

\(\Leftrightarrow m\left(-1\right)=3\)

\(\Leftrightarrow m=-3\)

vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)

4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)

\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)

\(\Leftrightarrow a=1\)

\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)

\(\Leftrightarrow K\left(2\right)=a+b=3\)

\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)

\(\Leftrightarrow a+\left(-b\right)+c2=5\)

ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)

vậy \(a=1;b=2;c=3\)

11 tháng 8 2020

1. a) Sắp xếp :

f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9

g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9

b) h(x) = f(x) + g(x)

           = -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9

           = ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )

           = 3x2- 3x

c) h(x) có nghiệm <=> 3x2 - 3x = 0

                             <=> 3x( x - 1 ) = 0

                             <=> 3x = 0 hoặc x - 1 = 0

                             <=> x = 0 hoặc x = 1

Vậy nghiệm của h(x) là x= 0 hoặc x = 1

2. D(x) = A(x) + B(x) - C(x)

            = 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )

            = 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2

            = ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 ) 

            = 9x3 

b) D(x) có nghiệm <=> 9x3 = 0 => x = 0 

Vậy nghiệm của D(x) là x = 0

3. M(x) = x2 - mx + 2

x = -1 là nghiệm của M(x)

=> M(-1) = (-1)2 - m(-1) + 2 = 0

=>              1 + m + 2 = 0

=>              3 + m = 0

=>              m = -3

Vậy với m = -3 , M(x) có nghiệm x = -1

4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )

K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1

              => a + 0b + c.0.(-1) = 1

              => a + 0 = 1

              => a = 1

K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3

              => 1 + 1b + c.1.0 = 3

              => 1 + b + 0 = 3

              => b + 1 = 3

              => b = 2

K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5

              => 1 + 5(-1) + c(-1)(-2) = 5

              => 1 - 5 + 2c = 5

              => 2c - 4 = 5

              => 2c = 9

              => c = 9/2

Vậy a = 1 ; b = 2 ; c = 9/2

16 tháng 6 2020

a)  x-7+3(x-5) = 0

=> x - 7 + 3x - 15 = 0

=> 4x - 22 = 0 

=> 4x = 22

=> x = 22/4 = 11/2

b) (x-1) (x2+4) = 0

có x^2 + 4 >

=> x - 1 = 0

=> x = 1

c) x2-4x+4 = 0

=> (x - 2)^2 = 0

=> x - 2 = 0 

=> x = 2

d) x2-5x+4 = 0

=> x^2 - x - 4x + 4 = 0

=> x(x - 1) - 4(x - 1) = 0

=> (x - 4)(x - 1) = 0

=> x - 4 = 0 hoặc x - 1 = 0

=> x = 4 hoặc x = 1

16 tháng 6 2020

x - 7 + 3( x - 5 ) 

Đa thức có nghiệm 

<=> x - 7 + 3x - 15 = 0

<=> 4x - 22 = 0

<=> 4x = 22

<=> x = 11/2

Vậy nghiệm của đa thức là 11/2

( x - 1 )( x2 + 4 ) = 0

Đa thức có nghiệm <=> ( x - 1 )( x2 + 4 ) = 0

                               <=> x - 1 = 0 hoặc x2 + 4 = 0

                               <=> x = 1 hoặc x2 = -4 ( vô lí )

Vậy nghiệm của đa thức là 1 

x2 - 4x + 4

Đa thức có nghiệm <=> x2 - 4x + 4 = 0

                                <=> ( x - 2 )2 = 0

                                <=> x - 2 = 0

                                 <=> x = 2

Vậy nghiệm của đa thức là 2

x2 - 5x + 4

Đa thức có nghiệm <=> x2 - 5x + 4 = 0

                                <=> ( x - 4 )( x - 1 ) = 0

                                <=> x - 4 = 0 hoặc x - 1 = 0

                                <=> x = 4 hoặc x = 1

Vậy nghiệm của đa thức là 4 và 1