Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,x^2-7x=0
<=>x(x-7)=0
<=>th1 x=0
th2 x-7=0=>x=7
vậy x=0 hoặc 7
\(a^2-7a=0\)
\(\Rightarrow a\left(a-7\right)=0\)
\(\Rightarrow\hept{\begin{cases}a=0\\a-7=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=0\\a=7\end{cases}}\)
a, \(M\left(x\right)=\left(5x^3-7x^2+x+7\right)-\left(7x^3-7x^2+2x+5\right)+\left(2x^3+4x+1\right)\)
\(=5x^3-7x^2+x+7-7x^3+7x^2-2x-5+2x^3+4x+1\)
\(=3x+3\)
b, Bậc của M(x) là 1
\(3x+3=0\Leftrightarrow3x=-3\Leftrightarrow x=-1\)
Nghiệm của M(x) = -1
Căng, sự thật là nó rất căng
Nhg dù sao thì.....
1) \(A\left(x\right)=\left(x-4\right)^2-\left(2x+1\right)^2\)
Xét \(A\left(x\right)=0\)
\(\Rightarrow\left(x-4\right)^2-\left(2x+1\right)^2=0\)
\(\Rightarrow x^2-8x+16-4x^2-4x-1=0\)
\(\Rightarrow-3x^2-12x+15=0\)
\(\Rightarrow-3x^2+3x-15x+15=0\)
\(\Rightarrow-3x\left(x-1\right)-15\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(-3x-15\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\-3x-15=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
2)(Sửa đề nha, sai cmnr) \(B\left(x\right)=x^3+x^2-4x-4\)
Xét \(B\left(x\right)=0\)
\(\Rightarrow x^3+x^2-4x-4=0\)
\(\Rightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Rightarrow\left(x^2-4\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\pm2\\x=-1\end{matrix}\right.\)
Đó là những j mình biết
1, \(\left(x-4\right)^2-\left(2x+1\right)^2=\left(x-4-2x-1\right)\left(x-4+2x+1\right)=-3\left(x+5\right)\left(x-1\right).\)
\(\orbr{\begin{cases}x+5=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=1\end{cases}}}\)(mấy cái này áp dụng hàng đẳng thức lớp 8 mới hok)
2,\(x^3+x^2-4x-4=\left(x-2\right)\left(x^2+3x+2\right)=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)
\(\orbr{\begin{cases}x=\mp2\\\end{cases}}x=-1\)
tương tụ lm tiếp nhe buồn ngủ quá rồi !
Câu 1: Tìm nghiệm của các đa thức:
1. P(x) = 2x -3
⇒2x-3=0
↔2x=3
↔x=\(\frac{3}{2}\)
2. Q(x) = −12−12x + 5
↔-12-12x+5=0
↔-12x=0+12-5
↔-12x=7
↔x=\(\frac{7}{-12}\)
3. R(x) = 2323x + 1515
↔2323x+1515=0
↔2323x=-1515
↔x=\(\frac{-1515}{2323}\)
4. A(x) = 1313x + 1
↔1313x + 1=0
↔1313x=-1
↔x=\(\frac{-1}{1313}\)
5. B(x) = −34−34x + 1313
↔−34−34x + 1313=0
↔-34x=0+34-1313
↔-34x=-1279
↔x=\(\frac{1279}{34}\)
Câu 2: Chứng minh rằng: đa thức x2 - 6x + 8 có hai nghiệm số là 2 và 4
Giải :cho x2 - 6x + 8 là f(x)
có:f(2)=22 - 6.2 + 8
=4-12+8
=0⇒x=2 là nghiệm của f(x)
có:f(4)=42 - 6.4 + 8
=16-24+8
=0⇒x=4 là nghiệm của f(x)
Câu 3: Tìm nghiệm của các đa thức sau:
1.⇒ (2x - 4) (x + 1)=0
↔2x-4=0⇒2x=4⇒x=2
x+1=0⇒x=-1
-kết luận:x=2 vàx=-1 là nghiệm của A(x)
2. ⇒(-5x + 2) (x-7)=0
↔-5x + 2=0⇒-5x=-2⇒
x-7=0⇒x=7
-kết luận:x=\(\frac{2}{5}\)và x=7 là nghiệm của B(x)
3.⇒ (4x - 1) (2x + 3)=0
⇒4x-1=0↔4x=1⇒x=\(\frac{1}{4}\)
2x+3=0↔2x=3⇒x=\(\frac{3}{2}\)
-kết luận:x=\(\frac{1}{4}\)và x=\(\frac{3}{2}\) là nghiệm của C(x)
4. ⇒ x2- 5x=0
↔x.x-5.x=0
↔x.(x-5)=0
↔x=0
x-5=0⇒x=5
-kết luận:x=0 và x=5 là nghiệm của D(x)
5. ⇒-4x2 + 8x=0
↔-4.x.x+8.x=0
⇒x.(-4x+x)=0
⇒x=0
-4x+x=0⇒-3x=0⇒x=0
-kết luận:x=0 là nghiệm của E(x)
Câu 4: Tính giá trị của:
1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2
-X=1⇒f(x) =4
-X=0⇒f(x) =7
-X=2⇒f(x) =89
2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2
-X=-1⇒G(x) =-14
-X=0⇒G(x) =2
-X=1⇒G(x) =20
-X=2⇒G(x) =43
Bài 1: tìm nghiệm của đa thức.
a) A(x) =\(\frac{1}{3}\)x + 1
⇔ 0 = \(\frac{1}{3}x+1\)
⇔ 0 = x + 3
⇔ -x = 3
⇔ x = -3
b) B(x) = \(\frac{2}{3}\)x +\(\frac{1}{5}\)
⇔ 0 = \(\frac{2}{3}x+\frac{1}{5}\)
⇔ 0 = 10x + 3
⇔ -10x = 3
⇔ x = \(-\frac{3}{10}\)
c) C(x) = (4x-1) . (2x+3)
⇔ 0 = (4x - 1).(2x + 3)
⇔ (4x -1).(2x +3) = 0
⇔ \(\left[{}\begin{matrix}4x-1=0\\2x+3=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=\frac{1}{4}\\x=-\frac{3}{2}\end{matrix}\right.\)
d) D(x) = (-5x+2).(x-7)
⇔ 0 = (-5x +2).(x - 7)
⇔ (-5x +2).( x -7) = 0
⇔ \(\left[{}\begin{matrix}-5x+2=0\\x-7=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=\frac{2}{5}\\x=7\end{matrix}\right.\)
e) E(x) = -4x2+8x
⇔ 0 = -4x2 + 8x
⇔ -4x2 + 8x = 0
⇔ -4x.(x-2) = 0
⇔ x.(x-2) = 0
⇔ \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Bài 6; tìm đa thức A biết :
a) A + 7x2y - 5xy2 -xy = x2y +8xy2 -5xy
A = x2y + 8xy2 -5xy -7x2y + 5xy2 + xy
A= -6x2y + 13xy2 - 4xy
b) 4x2 -7x +1- A = 3x2 -7x -1
⇔ 4x2 + 1 - A = 3x2 -1
-A= 3x2 -1 -4x2 -1
-A= -x2 - 2
A= x2 + 2
a,\(\left(3x^2.y^2\right).\left(-2xy^2\right)\)
\(=\left(-6\right).x^3.y^4\)
Hok tốt
1. f(x) = -3x4 + 5x3 + 2x2 - 7x + 7 tại x = 1; 0; 2
xét x=1 có f(x) =-3.14 +5.13 +2.12-7.1+7
=-3.1+5.1+2.1-7+7
=-3+5+2-7+7
=4
xét x=0 có f(x) =-3.04 +5.03 +2.02-7.0+7
=0+0+0-0+7=7
xét x=2 có f(x) =-3.24 +5.23 +2.22-7.2+7
=-3.16+5.8+2.4-14+7
=48+40+8-14+7
=89
2. g(x) = x4 - 5x3 + 7x2 + 15x + 2 tại x = -1; 0; 1; 2
xét x=-1 có: g(x)=(-1)4-5.(-1)3+7.(-1)2+15.(-1)+2
=1-5.(-1)+7.1-15+2
=1-(-5)+7-15+2
=1+5+7-15+2=0
xét x=0 có: g(x)=04-5.03+7.02+15.0+2
=0-0+0+0+2+2=2
xét x=1 có: g(x)=14-5.13+7.12+15.1+2
=1-5.1+7.1-15+2
=1-5+7-15+2
=1-5+7-15+2=-10
xét x=2 có: g(x)=24-5.23+7.22+15.2+2
=32-5.8+7.4-30+2
=32-40+28-30+2
=-8
3. h(x) = -x4 + 3x3 + 2x2 - 5x + 1 tại x = -2; -1; 1; 2
xét x=-2có:h(X)=-(-2)4 + 3(-2)3 + 2.(-2)2 - 5.(-2) + 1
=-(32)+3.(-8)+2.4+10+1
=-32-24+8+10+1
=-37
xét x=2có:h(X)=-(2)4 + 3.23 + 2.22 - 5.2 + 1
=-(32)+3.8+2.4+10+1
=-32+24+8+10+1
=11
xét x=1có:h(X)=14 + 3.13 + 2.12 - 5.1 + 1
=1+3.1+2.1+5+1
=1+3+2+5+1
=13
xét x=-1có:h(X)=-14 + 3.(-1)3 + 2.(-1)2 - 5.(-1) + 1
=1+3.(-1)+2.(-1)+5+1
=1-3-2+5+1
=2
4. r(x) = 3x4 + 7x3 + 4x2 - 2x - 2 tại x = -1; 0; 1
xét x=-1có:r(X)= 3(-1)4 + 7(-1)3 + 4(-1)2 - 2(-1)- 2
= 3.1+7.(-1) +4.1+2-2
=3-7+4+2-2
= 0
xét x=0có:r(X)= 3.04 + 7.03 + 4.02 - 2.0- 2
= 0+0+0-0-2
= -2
xét x=1có:r(X)= 3(1)4 + 7(1)3 + 4(1)2 - 2(1)- 2
= 3.1+7.1 +4.1-2-2
=3+7+4-2-2
= 10
a) 4x3y - 12x2y3 - 8x4y3 = 4x2y( x - 3y2 - 2x2y2 )
b) 2x2 + 4x + 2 - 2y2 = 2( x2 + 2x + 1 - y2 ) = 2[ ( x2 + 2x + 1 ) - y2 ] = 2[ ( x + 1 )2 - y2 ] = 2( x - y + 1 )( x + y + 1 )
c) x3 - 2x2 + x - xy2 = x( x2 - 2x + 1 - y2 ) = x[ ( x2 - 2x + 1 ) - y2 ] = x[ ( x - 1 )2 - y2 ] = x( x - y - 1 )( x + y - 1 )
d) x( x - 2y ) + 3( 2y - x ) = x( x - 2y ) - 3( x - 2y ) = ( x - 2y )( x - 3 )
e) x4 + 4 = ( x4 + 4x2 + 4 ) - 4x2 = ( x2 + 2 )2 - ( 2x )2 = ( x2 - 2x + 2 )( x2 + 2x + 2 )
f) 5x2 - 7x - 6 = 5x2 - 10x + 3x - 6 = 5x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 5x + 3 )
a: =>2^x*4-2^x*3=32
=>2^x=32
=>x=5
b: =>(4x-3)^2-(4x-3)=0
=>(4x-3)(4x-3-1)=0
=>(4x-3)(4x-4)=0
=>x=3/4 hoặc x=1
c: =>7^2x+7^2x*7^3=344
=>7^2x=1
=>2x=0
=>x=0
d: =>(7x-3)^2012-(7x-3)^2010=0
=>(7x-3)^2010*[(7x-3)^2-1]=0
=>(7x-3)^2010*(7x-4)(7x-2)=0
=>x=2/7; x=4/7; x=3/7
e: =>(4x^2-3)^3=-8
=>4x^2-3=-2
=>4x^2=1
=>x^2=1/4
=>x=1/2 hoặc x=-1/2
a) 2x(22 - 3) = 32
2x.1=25
=> x = 5
b) (4x - 3)2 = 4x -3
=> (4x - 3)2 - (4x - 3) = 0
(4x-3)[(4x - 3) - 1] = 0
(4x-3)(4x - 4)=0
\(\Rightarrow\left[{}\begin{matrix}4x-3=0\\4x-4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=1\end{matrix}\right.\)
c) 72x + 72x+3 = 344
=> 72x(1 + 73) =344
72x . 344 = 344
=> 2x = 0 => x = 0
d) (7x - 3)2012 = (3 - 7x)2010
=> (7x - 3)2012 - (7x - 3)2010 = 0
(7x - 3)2010 [(7x - 3)2 - 1] = 0
\(\Rightarrow\left[{}\begin{matrix}7x-3=0\\\left(7x-3\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{7}\\7x=4\\7x=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{7}\\x=\dfrac{4}{7}\\x=\dfrac{2}{7}\end{matrix}\right.\)
e) (4x2 - 3)3 + 8 = 0
(4x2 - 3)3 = (-2)3
=> 4x2 - 3 = -2
4x2 = 1
x2 = 1/4
=> \(x=\pm\dfrac{1}{2}\)