Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=3x^2y^3-5x^2+3x^3y^2\)
\(B=x^2y^3+\dfrac{5}{2}x^5y-5x^2y\)
b: \(A+B=4x^2y^3+5x^2+\dfrac{5}{2}x^5y+3x^3y^2-5x^2y\)
\(A-B=2x^2y^3-5x^2+3x^3y^2-\dfrac{5}{2}x^5y+5x^2y\)
c: Khi x=-1 và y=-1/3 thì \(A=3\cdot\left(-1\right)^2\cdot\dfrac{-1}{27}-5\cdot\left(-1\right)^2+3\cdot\left(-1\right)^3\cdot\dfrac{1}{9}\)
\(=-\dfrac{1}{9}-5-\dfrac{1}{3}=\dfrac{-49}{9}\)
A=15x2y2+7x2-8x3y2-12x2+11x3y2-12x2y2
= (15x2y2-12x2y2)+(7x2-12x2)+(-8x3y2+11x3y2)
= 3x2y2-5x2+3x3y2
Bậc của đa thức A: 5
Hệ số cao nhất: 3
B= \(3x^5y+\dfrac{1}{3}xy^4+\dfrac{3}{4}x^2y^3-\dfrac{1}{2}x^5y+2xy^4-x^2y^3\)
=\(\left(3x^5y-\dfrac{1}{2}x^5y\right)+\left(\dfrac{1}{3}xy^4+2xy^4\right)+\left(\dfrac{3}{4}x^2y^3-x^2y^3\right)\)
= 2,5x5y+\(\dfrac{7}{3}\)xy4-\(\dfrac{1}{4}\)x2y3
Bậc của đa thức B: 6
Hệ số cao nhất : \(\dfrac{7}{3}\)
\(\left(5-xy\right)^2=25-10xy+x^2y^2\)
\(\left(3-2y\right)^2=9-12y+4y^2\)
\(\left(3+x^2\right)\left(3-x^2\right)=9-x^4\)
\(\left(5x-2y\right)\left(25x+10xy+4y^2\right)=\left(5x-2y\right)\left(5x+2y\right)=25x^2-4y^2\)\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)=\left(3x+y\right)\left(3x-y\right)=9x^2-y^2\)
\(x^2+2xy+x+2y\)
\(=x\left(x+1\right)+2y\left(x+1\right)\)
\(=\left(x+1\right)\left(2y+x\right)\)
\(7x^2-7xy-5x+5y\)
\(=7x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(7x-5\right)\)
a)x2+2xy+x+2y
=(2xy+x2)+(2y+x)
=x(2y+x)+(2y+x)
=(x+1)(2y+x)
b)7x2-7xy-5x+5y
=(5y-7xy)+(7x2-5x)
=y(5-7x)-x(5-7x)
=(5-7x)(y-x)
c)x2-6x+9-9y2
=(x2+3xy-3x)-(3xy+9y2-9y)-(3x+9y-9)
=x(x+3y-3)-3y(x+3y-3)-3(x+3y-3)
=(x-3y-3)(x+3y-3)
d)x3-3x2+3x-1+2(x2-x)
Ta thấy x=1 là nghiệm của đa thức
=>đa thức có 1 hạng tử là x-1
=(x-1)(x2+1)
e) (x+y)(y+z)(z+x)+xyz
đề sai
f)x(y2-z2)+y(z2-x2)
=(xy2+yz2)+(x2y+xz2)
=y(xy+z2)-x(xy+z2)
=(y-x)(xy+z2)
\(4x^4-21x^2y^2+y^4\)
\(=\left(4x^4+4x^2y^2+y^4\right)-25x^2y^2\)
\(=\left(2x^2+y^2\right)^2-\left(5xy\right)^2\)
\(=\left(2x^2+y^2-5xy\right)\left(2x^2+y^2+5xy\right)\)
\(a,4x^4-21x^2y^2+y^4=\left(2x^2\right)^2+4x^2y^2+y^4-4x^2y^2-21x^2y^2\)
\(=\left(2x^2+y^2\right)^2-25x^2y^2\)
\(=\left(2x^2+y^2-5xy\right)\left(2x^2+y^2+5xy\right)\)
\(b,x^5-5x^3+4x=x\left(x^4-5x^2+4\right)\)
\(=x\left(x^4-4x^2-x^2+4\right)\)
\(=x\left[x^2\left(x^2-4\right)-\left(x^2-4\right)\right]\)
\(=x\left(x^2-4\right)\left(x^2-1\right)\)
\(=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
\(c,x^3+5x^2+3x-9=x^3-x^2+6x^2-6x+9x-9\)
\(=x^2\left(x-1\right)+6x\left(x-1\right)+9\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+6x+9\right)\)
\(=\left(x-1\right)\left(x^2+3x+3x+9\right)\)
\(=\left(x-1\right)\left[x\left(x+3\right)+3\left(x+3\right)\right]\)
\(=\left(x-1\right)\left(x+3\right)\left(x+3\right)\)
\(=\left(x-1\right)\left(x+3\right)^2\)
\(d,x^{16}+x^8-2=x^{16}+2x^8-x^8-2\)
\(=x^8\left(x^8-1\right)+2\left(x^8-1\right)\)
\(=\left(x^8-1\right)\left(x^8+2\right)\)
1) \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
3) \(ab\left(x^2+y^2\right)+xy\left(a^2+b^2\right)\)
\(=abx^2+aby^2+a^2xy+b^2xy\)
\(=ax\left(bx+ay\right)+by\left(ay+bx\right)\)
\(=\left(ay+bx\right)\left(ax+by\right)\)
a) 4x3y - 12x2y3 - 8x4y3 = 4x2y( x - 3y2 - 2x2y2 )
b) 2x2 + 4x + 2 - 2y2 = 2( x2 + 2x + 1 - y2 ) = 2[ ( x2 + 2x + 1 ) - y2 ] = 2[ ( x + 1 )2 - y2 ] = 2( x - y + 1 )( x + y + 1 )
c) x3 - 2x2 + x - xy2 = x( x2 - 2x + 1 - y2 ) = x[ ( x2 - 2x + 1 ) - y2 ] = x[ ( x - 1 )2 - y2 ] = x( x - y - 1 )( x + y - 1 )
d) x( x - 2y ) + 3( 2y - x ) = x( x - 2y ) - 3( x - 2y ) = ( x - 2y )( x - 3 )
e) x4 + 4 = ( x4 + 4x2 + 4 ) - 4x2 = ( x2 + 2 )2 - ( 2x )2 = ( x2 - 2x + 2 )( x2 + 2x + 2 )
f) 5x2 - 7x - 6 = 5x2 - 10x + 3x - 6 = 5x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 5x + 3 )