Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{25x^2}=10\)
\(\sqrt{\left(5x\right)^2}=10\)
\(5x=10\)
\(x=2\)
b. <=> \(\sqrt{4\left(x^2-1\right)}=2\sqrt{15}\) ĐKXĐ: x>=1,x>=-1
<=> \(4\left(x^2-1\right)=60\Leftrightarrow x^2-1=15\Leftrightarrow x^2-16=0\Leftrightarrow\left(x-4\right)\left(x+4\right)=0\)
<=>x=+-4
a)
\(\sqrt{4x-4}-\sqrt{9x-9}+\sqrt{25x-25}=4+\sqrt{16x-16}\\ \Leftrightarrow2\sqrt{x-1}-3\sqrt{x-1}-4\sqrt{x-1}+5\sqrt{x-1}=4\\ \Leftrightarrow0\sqrt{x-1}=4\\ \Rightarrow kh\text{ô}ng\:c\text{ó}\:gi\text{á}\:tr\text{ị}\:x\:th\text{õa}\:m\text{ãn}\)
b)
\(•\sqrt{7-x}+\sqrt{x-5}\le\sqrt{2.\left(7-x+x-5\right)}=2\\ •x^2-12x+38=\left(x-6\right)^2+2\ge2\)
ta thấy \(VT\le2\:v\text{à}\:VP\ge2\) nên \(VT=VP=2\)
đẳng thức xảy ra khi \(\left\{{}\begin{matrix}7-x=x-5\\x-6=0\end{matrix}\right.\Rightarrow x=6\)
vậy nghiệm của phương trình trên là x=6
a.
\(\sqrt{4x^2+4x+1}-\sqrt{25x^2+10x+1}=0\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}-\sqrt{\left(5x+1\right)^2}=0\)
\(\Leftrightarrow2x+1-\left(5x+1\right)=0\)
\(\Leftrightarrow-3x=0\Leftrightarrow x=0\)
b.
\(\sqrt{x^4-16x^2+64}=\sqrt{25x^2+10x+1}\)
\(\Leftrightarrow\sqrt{\left(x^2-8\right)^2}=\sqrt{\left(5x+1\right)^2}\)
\(\Leftrightarrow x^2-8=5x+1\)
\(\Leftrightarrow x^2-5x+\dfrac{25}{4}=\dfrac{61}{4}\)
\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{61}{4}\)
............................
tương tự ..
c: \(\Leftrightarrow\sqrt{x-5}\left(\sqrt{x+5}-1\right)=0\)
=>x-5=0 hoặc x+5=1
=>x=-4 hoặc x=5
d: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=7/2 hoặc x=-3/2
e: \(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)
=>x-2=0 hoặc 3 căn x+2=1
=>x=2 hoặc x+2=1/9
=>x=-17/9 hoặc x=2
DK: \(x\ge1\)
\(PT\Leftrightarrow\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\\ \Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\\ \Leftrightarrow2-2\sqrt{x-1}=0\\ \Leftrightarrow1-\sqrt{x-1}=0\\\Leftrightarrow \sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\left(TM\right)\)
Vậy phương trình đã cho có 1 nghiệm là x = 2
a/ \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐKXĐ : \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow2\sqrt{x-1}=2\Leftrightarrow x-1=1\Leftrightarrow x=2\)
b/ \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)
\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}+3=0\)
<=> 3 = 0 (vô lý)
=> pt vô nghiệm.
c/ \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (ĐKXĐ : x>-5/7)
\(\Leftrightarrow9x-7=7x+5\Leftrightarrow2x=12\Leftrightarrow x=6\)
d/ \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\) (ĐKXĐ : \(x\ge\frac{3}{2}\))
\(\Leftrightarrow2x-3=4\left(x-1\Leftrightarrow\right)2x=1\Leftrightarrow x=\frac{1}{2}\) (loại)
Vậy pt vô nghiệm.
......................?
mik ko biết
mong bn thông cảm
nha ................
a) x=49
b) x=4
c) x = 2 hoặc x = -2
d) x= 11,17355372
e) x =10
f) x=2
g)x = 10 000 000 ( nếu theo đề của bạn) và x=0,94 ( nếu theo đề bđ)
h) x =4
k) x = 4/3 hoặc x = -2/3
l) x = 2,5
m) x = 0,5
n) x=-0,5
ĐK: \(x\ge1\)
Ta có:
\(\sqrt{4x-4}+\sqrt{25x-25}+\sqrt{81x-81}=1\)
\(\Rightarrow\sqrt{4\left(x-1\right)}+\sqrt{25\left(x-1\right)}+\sqrt{81\left(x-1\right)}=1\)
\(\Rightarrow2\sqrt{x-1}+5\sqrt{x-1}+9\sqrt{x-1}=1\)
\(\Rightarrow16\sqrt{x-1}=1\)
\(\Rightarrow\sqrt{x-1}=\dfrac{1}{16}\)
\(\Rightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{4}\\x-1=-\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
bằng \(-\)1 mà bạn