Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = - 3\(x\).(\(x-5\)) + 3(\(x^2\) - 4\(x\)) - 3\(x\) - 10
A = - 3\(x^2\) + 15\(x\) + 3\(x^2\) - 12\(x\) - 3\(x\) - 10
A = (- 3\(x^2\) + 3\(x^2\)) + (15\(x\) - 12\(x\) - 3\(x\)) - 10
A = 0 + (3\(x-3x\)) - 10
A = 0 - 10
A = - 10
\(\frac{7^{x+2}+7^{x+1}+7x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
\(\Rightarrow\frac{7x\left(7^2+7^1+1\right)}{57}=\frac{5^{2x}\left(1+5^1+5^3\right)}{131}\)
\(\Rightarrow\frac{7x\left(49+7+1\right)}{57}=\frac{5^{2x}\left(1+5+125\right)}{131}\)
\(\Rightarrow\frac{7x.57}{57}=\frac{5^{2x}.131}{131}\)
\(\Rightarrow7x=25x\)
\(\Rightarrow x=0\)
\(\left(4x-3\right)^4=\left(4x-3\right)^2\)
\(\Rightarrow\left(4x-3\right)^4-\left(4x-3\right)^2=0\)
\(\Rightarrow\left(4x-3\right)^2\left[\left(4x-3\right)^2-1\right]=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(4x-3\right)^2=0\\\left(4x-3\right)^2=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x-3=0\\4x-3=-1\\4x-3=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\x=\frac{1}{2}\\x=1\end{cases}}\)
a: \(\Leftrightarrow\left|x-1\right|=3-2x\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3-x+1\right)\left(2x+3+x-1\right)=0\\x< =\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(3x+2\right)=0\\x< =\dfrac{3}{2}\end{matrix}\right.\)
=>x=-2/3
b: Trường hợp 1: x<-3
Pt sẽ là:
\(-x-1-x-3=10-4x\)
=>-2x-4=10-4x
=>2x=14
hay x=7(loại)
Trường hợp 2: -3<=x<-1
Pt sẽ là \(x+3-x-1=10-4x\)
=>10-4x=2
=>4x=8
hay x=2(loại)
Trường hợp 3: x>=-1
Pt sẽ là x+1+x+3=10-4x
=>2x+4=10-4x
=>6x=6
hay x=1(nhận)
a) \(f\left(x\right)=5x^3-7x^2+2x+5\)
\(\Rightarrow f\left(1\right)=5.1^3-7.1^2+2.1+5\)
\(\Rightarrow f\left(1\right)=5.1-7.1+2+5\)
\(\Rightarrow f\left(1\right)=5-7+7\)
\(\Rightarrow f\left(1\right)=5\)
Vậy f(1) = 5.
\(g\left(x\right)=7x^3-7x^2+2x+5\)
\(\Rightarrow g\left(\frac{1}{2}\right)=7.\left(\frac{1}{2}\right)^3-7.\left(\frac{1}{2}\right)^2+2.\frac{1}{2}+5\)
\(\Leftrightarrow g\left(\frac{1}{2}\right)=7.\frac{1}{8}-7.\frac{1}{4}+1+5\)
\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{7}{8}-\frac{14}{8}+6\)
\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{-7}{8}+\frac{48}{8}\)
\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{41}{8}\)
Vậy \(g\left(\frac{1}{2}\right)=\frac{41}{8}\)
\(h\left(x\right)=2x^3+4x+1\)
\(\Rightarrow h\left(0\right)=2.0^3+4.0+1\)
\(\Rightarrow h\left(0\right)=0+0+1\)
\(\Rightarrow h\left(0\right)=1\)
Vậy \(h\left(0\right)=1\)
a: ta có: \(\dfrac{2x-5}{7x-1}=\dfrac{4x+3}{14x-9}\)
\(\Leftrightarrow\left(2x-5\right)\left(14x-9\right)=\left(7x-1\right)\left(4x+3\right)\)
\(\Leftrightarrow28x^2-18x-70x+45=28x^2+21x-4x-3\)
=>-88x+45=17x-3
=>-105x=-48
hay x=16/35
b: Sửa đề: \(\dfrac{x}{4}=\dfrac{y}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{9}=\dfrac{x-y}{4-9}=\dfrac{105}{-5}=-21\)
Do đó: x=-84; y=-189
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{2x-5y}{2\cdot3-5\cdot4}=\dfrac{56}{-14}=-4\)
Do đó:x=-12; y=-16
e: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x^2}{2}=\dfrac{y^2}{3}=\dfrac{x^2+y^2}{2+3}=\dfrac{125}{5}=25\)
Do đó: \(x^2=50;y^2=75\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{5\sqrt{2};-5\sqrt{2}\right\}\\y\in\left\{5\sqrt{3};-5\sqrt{3}\right\}\end{matrix}\right.\)
a,100-x-2x-3x-4x=90
100-10x=90
10.(10-x)=90
10-x=9
x=10-9=1
Vậy....
Giải :
\(\frac{x+1}{x-2}=\frac{3}{4}\)
\(\Rightarrow4.\left(x-1\right)=3.\left(x-2\right)\)
\(\Rightarrow4x-4=3x-6\)
\(\Rightarrow4x-4-3x+6=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)Không thỏa mãn => Không có giá trị x thỏa mãn đề bài
\(\frac{2x-3}{x+1}=\frac{4}{7}\)
\(\Rightarrow7.\left(2x-3\right)=4.\left(x+1\right)\)
\(\Rightarrow14x-21-4x-4=0\)
\(\Rightarrow10x-25=0\)
\(\Rightarrow10x=25\)
\(\Rightarrow x=\frac{25}{10}=\frac{5}{2}\)
Giá trị trên thỏa mãn đầu bài
Các phần khác em làm tương tự nha