Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, x = 0 ; y = 1/10
b, x = 10 ; y = 1/2 hoặc y = -1/2
k mk nha
1, \(x^2+\left(y-\frac{1}{10}\right)^4=0\) (1)
Ta thấy \(x^2\ge0;\left(y-\frac{1}{10}\right)^4\ge0\)với mọi x,y nên \(x^2+\left(y-\frac{1}{10}\right)^4\ge0\)với mọi x,y (2)
Từ (1) và (2) suy ra
\(\hept{\begin{cases}x^2=0\\y-\frac{1}{10}=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=\frac{1}{10}\end{cases}}}\)
2, \(\left(\frac{1}{2}x-5\right)^{20^2}+\left(y^2-\frac{1}{4}\right)^{10}\le0\) (1)
Ta thấy \(\left(\frac{1}{2}x-5\right)^{20}\ge0\Rightarrow\left(\frac{1}{2}x-5\right)^{20^2}\ge0\)với mọi x
\(\left(y^2-\frac{1}{4}\right)^{10}\ge0\)với mọi y
Suy ra \(\left(\frac{1}{2}x-5\right)^{20^2}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\)(2)
Từ (1) và (2) suy ra
\(\hept{\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}\Rightarrow\hept{\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}\Rightarrow}\hept{\begin{cases}x=10\\y\in\left\{\frac{1}{2};-\frac{1}{2}\right\}\end{cases}}}\)
Vậy....
a.\(\frac{5}{4}x^2y.\left(\frac{-5}{6}xy\right)^0\left(\frac{-7}{3}xy\right)\)= \(\frac{5}{4}x^2y.1.\left(\frac{-7}{3}xy\right)\)= \(\frac{-35}{12}x^3.y^2\)
câu b, c,d làm tương tự như trên nha ^.^
a)Nhận xét:
\(x^2;\left(y+\frac{1}{10}\right)^4\ge0\) nên tổng chúng bằng 0 khi cả 2 bằng 0
<=> \(x=0;y=-\frac{1}{10}\)
b) \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\) nên không tìm được giá trị x và y thoả mãn đề bài.
a)Như ta đã thấy:
\(x^2;\left(y+\frac{1}{10}\right)^4\ge0\) Nên tổng trên = 0 khi 2 số hạng bằng 0
=> x= 0 và y = -1/10
b) vì:
\(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\)
a,A=\(\frac{1}{2}.\left(\frac{2.2}{1.3}.\frac{3.3}{2.4}......\frac{2016.2016}{2015.2017}\right)=\frac{1}{2}.\left(\frac{2.3.4...2016}{1.2....2015}.\frac{2.3.4...2016}{3.4....2017}\right)=\frac{1}{2}.\left(\frac{2016.2}{2017}\right)=\frac{4032}{4034}=\frac{2016}{2017}\)
Hok tốt
\(\left|x\right|=\frac{1}{2}\Rightarrow x=\orbr{\begin{cases}\frac{1}{2}\\-\frac{1}{2}\end{cases}}\)
TH1:\(x=\frac{1}{2}\)
\(\Rightarrow\frac{1}{2}-\frac{3}{2}+5=4\)
TH2:\(x=\frac{-1}{2}\)
\(\Rightarrow\frac{1}{2}+\frac{3}{2}+5=7\)
Vậy
Bài 1:
\(A=\frac{a+b}{b+c}.\)
Ta có:
\(\frac{b}{a}=2\Rightarrow\frac{b}{2}=\frac{a}{1}\) (1)
\(\frac{c}{b}=3\Rightarrow\frac{c}{3}=\frac{b}{1}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{b}{2}=\frac{c}{6}.\)
\(\Rightarrow\frac{a}{1}=\frac{b}{2}=\frac{c}{6}=\frac{a+b}{3}=\frac{b+c}{8}.\)
\(\Rightarrow A=\frac{a+b}{b+c}=\frac{3}{8}\)
Vậy \(A=\frac{a+b}{b+c}=\frac{3}{8}.\)
Bài 2:
a) \(\frac{72-x}{7}=\frac{x-40}{9}\)
\(\Rightarrow\left(72-x\right).9=\left(x-40\right).7\)
\(\Rightarrow648-9x=7x-280\)
\(\Rightarrow648+280=7x+9x\)
\(\Rightarrow928=16x\)
\(\Rightarrow x=928:16\)
\(\Rightarrow x=58\)
Vậy \(x=58.\)
b) \(\frac{x+4}{20}=\frac{5}{x+4}\)
\(\Rightarrow\left(x+4\right).\left(x+4\right)=5.20\)
\(\Rightarrow\left(x+4\right).\left(x+4\right)=100\)
\(\Rightarrow\left(x+4\right)^2=100\)
\(\Rightarrow x+4=\pm10.\)
\(\Rightarrow\left[{}\begin{matrix}x+4=10\\x+4=-10\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10-4\\x=\left(-10\right)-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=-14\end{matrix}\right.\)
Vậy \(x\in\left\{6;-14\right\}.\)
Chúc bạn học tốt!
Bài 2:
a, \(\frac{72-x}{7}=\frac{x-40}{9}\)
\(\Rightarrow\left(72-x\right).9=\left(x-40\right).7\)
\(\Rightarrow9.72-9.x=7.x-7.40\)
\(\Rightarrow648-9x=7x-280\)
\(\Rightarrow-9x-7x=-280-648\)
\(\Rightarrow-16x=-648\)
\(\Rightarrow x=58\)
Vậy \(x=58\)
a/ Ta luôn có : \(\begin{cases}x^2\ge0\\\left(y-\frac{1}{10}\right)^4\ge0\end{cases}\)\(\Rightarrow x^2+\left(y-\frac{1}{10}\right)^4\ge0\)
Để dấu "=" xảy ra thì x = 0 , y = 1/10
b/ Tương tự.
a) Vì \(x^2\ge0;\left(y-\frac{1}{10}\right)^2\ge0\)
Mà theo đề bài: \(x^2+\left(y-\frac{1}{10}\right)^2=0\)
=> \(\begin{cases}x^2=0\\\left(y-\frac{1}{10}\right)^2=0\end{cases}\) => \(\begin{cases}x=0\\y-\frac{1}{10}=0\end{cases}\) => \(\begin{cases}x=0\\y=\frac{1}{10}\end{cases}\)
Vậy \(x=0;y=\frac{1}{10}\)
b) Vì \(\left(\frac{1}{2}x-5\right)^{26}\ge0;\left(y^2-\frac{1}{4}\right)^{10}\ge0\)
Mà theo đề bài: \(\left(\frac{1}{2}x-5\right)^{26}+\left(y^2-\frac{1}{4}\right)^{10}=0\)
=> \(\begin{cases}\left(\frac{1}{2}x-5\right)^{26}=0\\\left(y^2-\frac{1}{4}\right)^{10}=0\end{cases}\)=> \(\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}\)=> \(\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}\)=> \(\begin{cases}x=10\\y\in\left\{\frac{1}{2};\frac{-1}{2}\right\}\end{cases}\)
Vậy \(x=10;y\in\left\{\frac{1}{2};\frac{-1}{2}\right\}\)