Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x/3=y/5=x+y/3+5=16/8=2
x/3=2 suy ra x=6
y/5=2 suy ra y=10
x/2=y/3suy ra x/8=y/12
y/4=z/5 suy ra y/12=z/15
x/8=y/12=z/15=x+y-z/8+12-15=10/5=2
x/8=2 suy ra x=16
y/12=2 suy ra y=24
x/15=2 suy ra z=30
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
Ta có: x/2 = y/3 ; y/4 = z/5 và x+y-z=10
=> x/8=y/12=z/15
ADTC dãy tỷ số = nhau ta có:
x/8=y/12=z/15=(x+y-z)/(8+12-15)=10/5=2
Suy ra: x/8=2=>x=16
y/12=2=>y=24
z/15=2=>z=30
Vậy....
HT
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
suy ra: \(\frac{x}{8}=2\Rightarrow x=2.8=16\)
\(\frac{y}{12}=2\Rightarrow y=2.12=24\)
\(\frac{z}{15}=2\Rightarrow z=2.15=30\)
Ta có: \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\) => \(\frac{y}{12}=\frac{z}{15}\)
=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}}\) => \(\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)
\(\frac{x}{2}=\frac{y}{3}\) \(\left(\text{*}\right)\)
\(\frac{y}{4}=\frac{z}{5}\) \(\left(\text{*}\text{*}\right)\)
\(x+y-z=10\) \(\left(\text{*}\text{*}\text{*}\right)\)
\(\left(\text{*}\right)\)\(\Leftrightarrow3x=2y\Leftrightarrow x=\frac{2y}{3}\)
\(\left(\text{*}\text{*}\right)\)\(\Leftrightarrow5y=4z\Leftrightarrow z=\frac{5y}{4}\)
Cả (*) và (**) thế vào (***)
\(\frac{2y}{3}+y-\frac{5y}{4}=10\Leftrightarrow\frac{5y}{12}=10\Leftrightarrow y=24\)
\(\Leftrightarrow x=16;z=30\)
Vậy ...
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)(1)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)(2)
Từ (1) và (2) suy ra\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow x=2.8=16\)
\(y=2.12=24\)
\(z=2.15=30\)
Vậy x=16;y=24;z=30
\(\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{y}{12}=\frac{z}{15}\)
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
x/8 = 2 => x = 16
y/12 = 2 => y = 24
z/15 = 2 => z = 30
Vậy x = 16 ; y = 24 ; z = 30