Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
suy ra: \(\frac{x}{8}=2\Rightarrow x=2.8=16\)
\(\frac{y}{12}=2\Rightarrow y=2.12=24\)
\(\frac{z}{15}=2\Rightarrow z=2.15=30\)
Ta có: \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\) => \(\frac{y}{12}=\frac{z}{15}\)
=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}}\) => \(\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)
\(\frac{x}{2}=\frac{y}{3}\) \(\left(\text{*}\right)\)
\(\frac{y}{4}=\frac{z}{5}\) \(\left(\text{*}\text{*}\right)\)
\(x+y-z=10\) \(\left(\text{*}\text{*}\text{*}\right)\)
\(\left(\text{*}\right)\)\(\Leftrightarrow3x=2y\Leftrightarrow x=\frac{2y}{3}\)
\(\left(\text{*}\text{*}\right)\)\(\Leftrightarrow5y=4z\Leftrightarrow z=\frac{5y}{4}\)
Cả (*) và (**) thế vào (***)
\(\frac{2y}{3}+y-\frac{5y}{4}=10\Leftrightarrow\frac{5y}{12}=10\Leftrightarrow y=24\)
\(\Leftrightarrow x=16;z=30\)
Vậy ...
ta có x/2=x/8 và y/3=y12
y/4=y/12 và z/5=z/15
theo tính chất của dãy tỉ số bằng nhau
x/8 = y/12 = z/15 va x+y-z =10
x/8 = y/12 = z/15 = x+y-z/8+12-15 = 10/5 =2
=> x=8x2=16
y=12x2=24
z=15x2=30
Giải:
Ta có:
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
Từ trên suy ra \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
+) \(\frac{x}{8}=2\Rightarrow x=16\)
+) \(\frac{y}{12}=2\Rightarrow y=24\)
+) \(\frac{z}{15}=2\Rightarrow z=30\)
Vậy x = 16; y = 24; z = 30
Theo đề bài, ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\) và x+y-z=10
\(\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\) và x+y-z=10
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
- \(\frac{x}{8}=2.8=16\)
- \(\frac{y}{12}=2.12=24\)
- \(\frac{z}{15}=2.15=30\)
Vậy x=16,y=24,z=30.
^...^ ^_^
x/2=y/3 nên x/8=y/12
y/4=z/5 nên y/12=z/15
=>x/8=y/12=z/15
Áp dụng t/c dãy tỉ số bằng nhau, ta được:
x/8=y/12=z/15=(x+y-z)/(8+12-15)=10/5=2
Do đó, x=2*8=16
y=2*12=24
z=2*15=30
Ta có:
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
Suy ra: \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Vì \(\frac{x}{8}=2\Rightarrow x=8\cdot2=16\)
\(\frac{y}{12}=2\Rightarrow y=12\cdot2=24\)
\(\frac{z}{15}=2\Rightarrow z=15\cdot2=30\)
Vậy x=16; y=24; z=30.
x/3=y/5=x+y/3+5=16/8=2
x/3=2 suy ra x=6
y/5=2 suy ra y=10
x/2=y/3suy ra x/8=y/12
y/4=z/5 suy ra y/12=z/15
x/8=y/12=z/15=x+y-z/8+12-15=10/5=2
x/8=2 suy ra x=16
y/12=2 suy ra y=24
x/15=2 suy ra z=30
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
cách giải chi tiết nè bạn j đó ơi
ta có: x/2=y/3;y/4=z/5 và x+y-z=10
x/2=y/3=>x/8=y/12 1
y/4=z/5=>y/12=z/15 2
Từ 1, 2=> x/8=y/12=z/15
Áp dụng tính chất dãy tỉ số bằng nhau, ta có
x/8=y/12=z/15=x+y-z/8+12-15=10/5=2
Ta có:
x/8=2=>x=2.8=16
y/12=2=.=>y=2.12=24
z/15=2=>z=2.15=30
Vậy x=16;y=24;z=30
(Bài này mình chắc đúng luôn)
Ta có : \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}vax+y-z=10\)0
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left[1\right]\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left[2\right]\)
\(Tu1va2\Rightarrow:\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Leftrightarrow\frac{x}{8}=2\Rightarrow x=16;\frac{y}{12}=2\Rightarrow y=24\)
\(\frac{z}{15}=2\Rightarrow z=30.Vayx=16;y=24;z=30\)
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)(1)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)(2)
Từ (1) và (2) suy ra\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow x=2.8=16\)
\(y=2.12=24\)
\(z=2.15=30\)
Vậy x=16;y=24;z=30