Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(xyz=810\)
Đặt:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
Ta có:
\(x=2k\)
\(y=3k\)
\(z=5k\)
Thế vào xyz = 810, ta có:
\(2k.3k.5k=810\)
\(30.k^3=810\)
\(k^3=27\)
\(\Rightarrow k=3\)
Tới đây tự tính luôn ok :))
theo dãy tỉ số bằng nhau ta có
\(\frac{2.\left(x-1\right)+3.\left(y-2\right).-1\left(z-4\right)}{2.2+3.3-1.4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)
\(=\frac{2x-2-\left(3y-6\right)+z-4}{4+9-4}=\frac{2x-2-3y+6+z-4}{9}=\frac{\left(2x+3y-z\right)-\left(2-6+4\right)}{9}\)
\(\frac{50}{9}\)
đến đây cl bạn tự làm được rồi chứ
đặt: x-1/2=y-2/3=z-3/4=k => x-1=2k;y-2=3k;z-3=4k
=> x= 2k +1 ;y = 3k+2; z = 4k+3
thay x=2k+1;y=3k+2;z=4k+3 vào 2x+3y-x=50
ta được:
2.(2k+1)+3.(3k+2)-(4k+3)=50
4k+2+9k+6-4k-3=50
9k+5=50
9k=45
k=5
=>x=2.5+1=11
y=3.5+2=17
z=4.5+3=23
\(\text{Câu 2: }\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
\(\text{Áp dụng tính chất của dảy tỉ số bằng nhau ta có:}\)
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{2x+3y+5z}{2.8+3.12+5.15}=\frac{127}{127}=1\)
\(\text{Suy ra: }\frac{x}{8}=1\Rightarrow x=8\)
\(\frac{y}{12}=1\Rightarrow y=12\)
\(\frac{z}{15}=1\Rightarrow z=15\)