Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2x}{5}=\dfrac{3y}{4}=\dfrac{4z}{5}\)
\(\Rightarrow\dfrac{2}{5}x=\dfrac{3}{4}y=\dfrac{4}{5}z\)
\(\Rightarrow\dfrac{2}{5}x.\dfrac{1}{12}=\dfrac{3}{4}y.\dfrac{1}{12}=\dfrac{4}{5}z.\dfrac{1}{12}\)
\(\Rightarrow\dfrac{x}{30}=\dfrac{y}{16}=\dfrac{z}{15}\)
Đặt \(\dfrac{x}{30}=\dfrac{y}{16}=\dfrac{z}{15}=k\Rightarrow\left\{{}\begin{matrix}x=30k\\y=16k\\z=15k\end{matrix}\right.\). Ta có:
\(x+y+z=49\)
\(\Rightarrow30k+16k+15k=49\)
\(\Rightarrow61k=49\)
\(\Rightarrow k=\dfrac{49}{61}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{49}{61}.30=\dfrac{1470}{61}\\y=\dfrac{49}{61}.16=\dfrac{784}{61}\\z=\dfrac{49}{61}.15=\dfrac{735}{61}\end{matrix}\right.\)
\(\dfrac{2x}{5}=\dfrac{3y}{2}=\dfrac{5z}{7}\)
\(\Leftrightarrow28x=105y=50z\)
hay x/75=y/20=z/42
Đặt x/75=y/20=z/42=k
=>x=75k; y=20k; z=42k
Ta có: xyz=504000
\(\Leftrightarrow k^3\cdot63000=504000\)
\(\Leftrightarrow k=2\)
=>x=150; y=40; z=84
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}=\dfrac{x-3y+4z}{4-3.3+4.9}=\dfrac{63}{31}=2\)
\(\Rightarrow x=8\)
\(\Rightarrow y=6\)
\(\Rightarrow z=18\)
b. c. Xem lại đề.
bài 3:
a, đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
A/D tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2-z^2}{25+49-9}=\dfrac{585}{65}=9\)
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
Bài 2: a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Leftrightarrow\left(x-3\right).7=\left(x+5\right).5\)
\(\Leftrightarrow7x-21=5x+25\)
\(\Leftrightarrow7x-5x=21+25\)
\(\Leftrightarrow2x=46\)
\(\Rightarrow x=46:2=23\)
b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)=63\)
\(\Leftrightarrow x^2-1=63\)
\(\Leftrightarrow x^2=64\)
\(\Rightarrow x^2=\left(\pm8\right)^2\)
\(\Rightarrow x=8\) hoặc \(x=-8\)
2)a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Leftrightarrow7\left(x-3\right)=5\left(x+5\right)\)
\(7x-21=5x+25\)
\(7x-5x+25=21\)
\(2x+25=21\)
\(2x=-4\Rightarrow x=-2\)
b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(7.9=\left(x+1\right)\left(x-1\right)\)
\(63=x\left(x-1\right)+1\left(x-1\right)\)
\(63=x^2-x+x-1\)
\(x^2=63+1=64\)
\(x=\left\{\pm8\right\}\)
c) \(\dfrac{x+4}{20}=\dfrac{2}{x+4}\)
\(\Leftrightarrow\left(x+4\right)\left(x+4\right)=2.20=40\)
\(x\left(x+4\right)+4\left(x+4\right)=40\)
\(x^2+4x+4x+16=40\)
\(x^2+8x=40-16=24\)
\(x\left(x+8\right)=24\)
\(x\in\left\{\varnothing\right\}\)
d) \(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=\left(x-1\right)\left(x+3\right)\)
\(x\left(x-2\right)+2\left(x-2\right)=x\left(x+3\right)-1\left(x+3\right)\)
\(x^2-2x+2x-4=x^2+3x-x-3\)
\(\)\(x^2-4=x^2+2x-3\)
\(\Leftrightarrow x^2-x^2-2x+3=4\)
\(-2x+3=4\)
\(-2x=1\)
\(x=-\dfrac{1}{2}\)
`y=2/3x`
`=>3y=2x`
`=>8x=12y`
Mặt khác:`4z=3y`
`=>z=3/4y`
`=>5z=15/4y`
Thay `8x=12y,5z=15/4y` vào `8x+9y+5z=1980`
`=>15/4y+9y+12y=1980`
`=>21y+15/4y=1980`
`=>99/4y=1980`
`=>1/4y=20`
`=>y=80`
`=>x=3/2y=120,z=3/4y=60`
Vậy `(x,y,z)=(120,80,60)`
Ta có: 4z=3y
nên \(4z=3\cdot\dfrac{2}{3}x=x\)
hay \(z=\dfrac{1}{4}x\)
Ta có: 8x+9y+5z=1980
\(\Leftrightarrow8x+9\cdot\dfrac{2}{3}x+5\cdot\dfrac{1}{4}x=1980\)
\(\Leftrightarrow x\cdot\dfrac{61}{4}=1980\)
hay \(x=\dfrac{7920}{61}\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{3}x=\dfrac{2}{3}\cdot\dfrac{7920}{61}=\dfrac{5280}{61}\\4z=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5280}{61}\\4z=\dfrac{15840}{61}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5280}{61}\\z=\dfrac{3960}{61}\end{matrix}\right.\)
Vậy: \(\left(x,y,z\right)=\left(\dfrac{7920}{61};\dfrac{5280}{61};\dfrac{3960}{61}\right)\)