K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2015

\(\frac{x}{7}=\frac{9}{y}\Rightarrow x.y=9.7=63\)

\(63=3.3.7\Rightarrow\left(x,y\right)\inƯ\left(63\right)=\left\{1;3;7;9;21;63\right\}\)

mà x > y

=>  \(x\in\left\{63;21;9\right\};y\in\left\{1;3;7\right\}\) (theo thứ tự nhé).

Vậy có 6 3 cặp (x,y) là: (63,1); (21,3); (9,7).

7 tháng 10 2016

chết nhầm cho sửa lại

Đặt \(\frac{x}{3}=-\frac{y}{7}=k\)

\(\Rightarrow\frac{x}{3}=3k;-\frac{y}{7}=-7k\)

Theo đề bài ra  , ta có :

  \(3k.-7k=-189\)

  \(\Leftrightarrow-21k^2=-189\)

  \(\Leftrightarrow k^2=9\)

 \(\Leftrightarrow\left[\begin{array}{nghiempt}k=3\\k=-3\end{array}\right.\)

Khi \(k=3\) , thì :

  \(\left[\begin{array}{nghiempt}x=6\\y=-21\end{array}\right.\)

Khi \(k=-3\) , thì :

  \(\left[\begin{array}{nghiempt}x=-6\\y=21\end{array}\right.\)

Vậy ................

7 tháng 10 2016

Đặt \(\frac{x}{3}=-\frac{y}{7}=k\)

\(\Rightarrow\frac{x}{3}=3k;-\frac{y}{7}=-7k\)

Theo đề bài ta có :

   \(3k.-7k=-189\)

   \(\Leftrightarrow-21k^2=-189\)

   \(\Leftrightarrow k^2=9\)

   \(\Leftrightarrow\left[\begin{array}{nghiempt}k=9\\k=-9\end{array}\right.\)

Khi \(k=9\) , thì :

  \(\left[\begin{array}{nghiempt}x=27\\y=-63\end{array}\right.\)

Khi \(k=-9\) , thì :

  \(\left[\begin{array}{nghiempt}x=-27\\x=63\end{array}\right.\)

Vậy .................

  

21 tháng 3 2016

bạn nào nhanh đúng với đáp án của mình thì mình k

4 tháng 4 2019

Trả lời giúp chúng mik đi mai thầy kiểm tra

4 tháng 4 2019

1,\(\frac{xyz+x+z}{yz+1}=\frac{10}{7}\Rightarrow\frac{x\left(yz+1\right)+z}{yz+1}=\frac{10}{7}\)

\(\Leftrightarrow x+\frac{z}{yz+1}=\frac{10}{7}\Leftrightarrow x+\frac{1}{\frac{yz+1}{z}}=\frac{10}{7}\)

\(\Leftrightarrow x+\frac{1}{y+\frac{1}{z}}=1+\frac{3}{7}=1+\frac{1}{\frac{7}{3}}=1+\frac{1}{2+\frac{1}{3}}\)

Nên x=1,y=2,z=3 bài này thiếu điều kiện x,y,z nhé

2,bài 2 để mai anh xem nha

14 tháng 11 2018

a, Ta có \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

(=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)

(=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)

(=) \(\left(b-a\right).\left(a-b\right)=ab\)

Vì a,b là 2 số dương

=> \(\hept{\begin{cases}ab>0\left(1\right)\\\left(b-a\right).\left(a-b\right)< 0\left(2\right)\end{cases}}\) 

Từ (1) và (2) => Không tồn tại hai số a,b để \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

14 tháng 11 2018

b, Cộng vế với vế của 3 đẳng thức ta có :

\(x+y+y+z+x+z=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)

(=) \(2.\left(x+y+z\right)=-\frac{5}{6}\)

(=) \(x+y+z=\frac{-5}{12}\)

Ta có : \(x+y+z=\frac{-5}{12}\left(=\right)-\frac{7}{6}+z=-\frac{5}{12}\left(=\right)z=\frac{3}{4}\)

Lại có \(x+y+z=\frac{-5}{12}\left(=\right)x+\frac{1}{4}=-\frac{5}{12}\left(=\right)x=-\frac{2}{3}\)

Lại có \(x+y+z=-\frac{5}{12}\left(=\right)y+\frac{1}{12}=-\frac{5}{12}\left(=\right)y=\frac{-1}{2}\)

13 tháng 11 2018

Câu hỏi của Quách Quỳnh Bảo Ngọc - Toán lớp 7 - Học toán với OnlineMath.Em tham khảo cách làm ở link này nhé!

13 tháng 11 2018

đặt \(\frac{x}{5}=\frac{y}{7}=k\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)

=> x.y=5k.7k=35k2=875

k2=875:35=25

<=>k2=52

k={-5,5}

Thay k :

\(\hept{\begin{cases}x=5k=5.5=25\\y=7k=7.5=35\end{cases}}\) hoặc \(\hept{\begin{cases}x=5k=5.\left(-5\right)=-25\\y=7k=7.\left(-5\right)=-35\end{cases}}\)

Vậy \(x=\pm\)25;y=\(\pm\)35

21 tháng 8 2020

Bài làm:

Đặt \(\frac{x}{7}=\frac{y}{5}=\frac{z}{3}=k\)

=> \(\hept{\begin{cases}x=7k\\y=5k\\z=3k\end{cases}}\)

Mà \(yz=135\Leftrightarrow15k^2=135\Leftrightarrow k^2=9\Rightarrow k=\pm3\)

=> \(\hept{\begin{cases}x=\pm21\\y=\pm15\\z=\pm9\end{cases}}\)

21 tháng 8 2020

Đặt \(\frac{x}{7}=\frac{y}{5}=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=7k\\y=5k\\z=3k\end{cases}}\)

Khi đó yz = 135

<=> 5k.3k = 135

=> 15.k2 = 135

=> k2 = 9

=> k = \(\pm\)3

Nếu k = 3 => x = 21 ; y = 15 ; z = 9

Nếu k = -3 => x = -21 ; y = -15 ; z = -9

Vậy các cặp (x;y;z) thỏa mãn bài toán là (21 ; 15 ; 9) ; (-21 ; - 15 ; -9)

19 tháng 9 2015

sorry thêm nữa nhé:

đặt x/3=-y/7=k

=> x=3k; y=-7k

xy=-189

=> 3k.(-7k)=-189

=> -21k2=-189

=> k2=-189:(-21)

=> k2=9

=> k2=32=(-3)2

=> k=3 hoặc k=-3

TH1: k=3

=> x=3k=3.3=9

=> y=-7k=-7.3=-21

=> x+y=9+(-21)=-12

TH2: k=-3

=> x=3k=3.(-3)=-9

=> y=-7k=(-7).(-3)=21

mà x > y => loại TH2.