K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

2m - 2n = 256 = 28 \(\Rightarrow\)2n . ( 2m-n - 1 ) = 28

dễ thấy m \(\ne\)n , ta xét 2 trường hợp :

a) nếu m - n = 1 thì từ ( 1 ) ta có : 2n . ( 2 - 1 ) = 28 . suy ra : n = 8, m = 9

b) nếu m - n \(\ge\)2 thì 2m-n - 1 là 1 số lẻ lớn hơn 1 nên vế trái của ( 1 ) chứa thừa số nguyên tố lẻ khi phân tích ra thừa số nguyên tố. còn vế phải của ( 1 ) chỉ chứa thừa số nguyên tố 2. Mâu thuẫn

Vậy n = 8 , m = 9 là đáp số bài trên

2 tháng 8 2017

đặt A = \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\)

3A = \(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\)

3A - A = 2A = \(1+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)-\frac{100}{3^{100}}\)

biểu thức trong dấu ngoặc nhỏ hơn \(\frac{1}{2}\)( tự chứng minh ) nên 2A < 1 + \(\frac{1}{2}\)

\(\Rightarrow A< \frac{3}{4}\)

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

23 tháng 9 2017

a) \(1-\frac{1}{2}.\left(\frac{3}{2}-2x\right)=4x-\frac{1}{4}\)

\(-4x+\frac{3}{4}+x=1+\frac{1}{4}\)

\(-3x=\frac{4}{4}+\frac{1}{4}-\frac{3}{4}\)

\(-3x=\frac{1}{2}\)

\(x=\frac{-1}{6}\)

vay \(x=\frac{-1}{6}\)

b) \(x^{10}=1024\)

\(x^{10}=2^{10}\)

\(\Rightarrow x=2\)

vay \(x=2\)

c) \(3^x=81\)

\(3^x=3^4\)

\(\Rightarrow x=4\)

vay \(x=4\)

21 tháng 7 2019

#)Giải :

Bài 1 :

\(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\Leftrightarrow3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)

\(\Leftrightarrow3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(\Leftrightarrow2C=1-\frac{1}{3^{100}}\Leftrightarrow C=\frac{1-\frac{1}{3^{100}}}{2}< \frac{1}{2}\Rightarrow C< \frac{1}{2}\left(đpcm\right)\)

Bài 2 : 

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)

\(=\left(1-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{16}\right)+...+\left(\frac{1}{81}-\frac{1}{100}\right)=1-\frac{1}{100}=\frac{99}{100}< 1\)

\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)

15 tháng 5 2017

a) Thiếu đề (hoặc sai)

b) x đâu?

c)\(3x-1=x+2\)

\(\Rightarrow3x-x=2+1\)

\(\Rightarrow2x=3\)

\(\Rightarrow x=\frac{3}{2}\)

c) \(\frac{x+2}{5}=\frac{2-3x}{3}\)

\(\Rightarrow3.\left(x+2\right)=5.\left(2-3x\right)\)

\(\Rightarrow3x+6=10-15x\)

\(\Rightarrow3x+15x=10-6\)

\(\Rightarrow18x=4\)

\(\Rightarrow x=\frac{4}{18}=\frac{2}{9}\)

15 tháng 5 2017

câu 1 là \(x\times\left(4.6+\frac{3}{5}\right)=7.2-8.15\)

câu 2 là \(42+\frac{3}{7}.\left[3\times x-1=12\right]\)

25 tháng 7 2019

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)

\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)

\(\Rightarrow2\cdot\frac{x-1}{2x+2}=\frac{2009}{2011}\)

\(\Rightarrow\frac{2x-2}{2x+2}=\frac{2009}{2011}\)

Bạn làm nốt.Nhân chéo là ra

25 tháng 7 2019

\(\left(x-1\right)f\left(x\right)=\left(x+4\right)\cdot f\left(x+8\right)\)

Với  \(x=1\) ta có:

\(\left(1-1\right)\cdot f\left(1\right)=\left(1+4\right)\cdot f\left(9\right)\)

\(\Rightarrow5\cdot f\left(9\right)=0\)

\(\Rightarrow f\left(9\right)=0\)

Vậy \(x=9\)

Thay \(x=-4\) vào ta được:

\(\left(-4-1\right)\cdot f\left(-4\right)=0\cdot f\left(4\right)\)

\(\Rightarrow f\left(-4\right)=0\)

Vậy \(x=-4\)

\(\Rightarrow f\left(x\right)\) có ít nhất 2 nghiệm là 9;-4

25 tháng 9 2018

a) \(\left(2-\frac{3}{2}\right)\left(2-\frac{4}{3}\right)\left(2-\frac{5}{4}\right)\left(2-\frac{6}{4}\right)\)

\(=\frac{1}{3}\left(-\frac{4}{3}+2\right)\left(-\frac{5}{4}+2\right)\left(-\frac{6}{4}+2\right)\)

\(=\frac{1}{2}.\frac{2}{3}\left(-\frac{5}{4}+2\right)\left(-\frac{6}{4}+2\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}\left(-\frac{6}{4}+2\right)\)

\(=\frac{1.2.3\left(2-\frac{3}{2}\right)}{2.3.4}\)

\(=\frac{1.3\left(2-\frac{3}{2}\right)}{3.4}\)

\(=\frac{1.\left(2-\frac{3}{2}\right)}{4}\)

\(=\frac{2-\frac{3}{4}}{4}\)

\(=\frac{1}{2.4}\)

\(=\frac{1}{8}\)

b) \(\left(\frac{2003}{2004}+\frac{2004}{2003}\right):\frac{8028025}{8028024}\)

\(=\frac{8028024\left(\frac{2003}{2004}+\frac{2004}{2003}\right)}{8028025}\)

\(=\frac{8028024.\frac{8028025}{4014012}}{8028025}\)

\(=\frac{16056050}{8028025}\)

= 2