Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
a) \(\left(2-\frac{3}{2}\right)\left(2-\frac{4}{3}\right)\left(2-\frac{5}{4}\right)\left(2-\frac{6}{4}\right)\)
\(=\frac{1}{3}\left(-\frac{4}{3}+2\right)\left(-\frac{5}{4}+2\right)\left(-\frac{6}{4}+2\right)\)
\(=\frac{1}{2}.\frac{2}{3}\left(-\frac{5}{4}+2\right)\left(-\frac{6}{4}+2\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}\left(-\frac{6}{4}+2\right)\)
\(=\frac{1.2.3\left(2-\frac{3}{2}\right)}{2.3.4}\)
\(=\frac{1.3\left(2-\frac{3}{2}\right)}{3.4}\)
\(=\frac{1.\left(2-\frac{3}{2}\right)}{4}\)
\(=\frac{2-\frac{3}{4}}{4}\)
\(=\frac{1}{2.4}\)
\(=\frac{1}{8}\)
b) \(\left(\frac{2003}{2004}+\frac{2004}{2003}\right):\frac{8028025}{8028024}\)
\(=\frac{8028024\left(\frac{2003}{2004}+\frac{2004}{2003}\right)}{8028025}\)
\(=\frac{8028024.\frac{8028025}{4014012}}{8028025}\)
\(=\frac{16056050}{8028025}\)
= 2
a. \(25^3:5^2\)
\(=\left(5^2\right)^3:5^2\)
\(=5^6:5^2=5^4\)
b. \(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6\)
\(=\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6\)
\(=\left(\frac{3}{7}\right)^{21-\left(2+6\right)}=\left(\frac{3}{7}\right)^{21-12}=\left(\frac{3}{7}\right)^9\)
\(a,25^3:5^2\)
=\(\left(5^2\right)^3:5^2\)
=\(5^6:5^2\)
=\(5^4\)
\(b,\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6\)
=\(\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6\)
\(=\left(\frac{3}{7}\right)^{21}:\left(\frac{3}{7}\right)^{12}\)
\(=\left(\frac{3}{7}\right)^9\)
\(c,3-\left(\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2\)
=\(3-1+\frac{1}{4}:2\)
\(=2+\frac{1}{4}\cdot\frac{1}{2}\)
\(=2+\frac{1}{8}\)
\(=\frac{17}{8}\)
\(d,\left(-\frac{7}{4}:\frac{5}{8}\right)\cdot\frac{11}{16}\)
\(=\left(-\frac{7}{4}\cdot\frac{8}{5}\right)\cdot\frac{11}{16}\)
\(=-\frac{14}{5}\cdot\frac{11}{16}\)
\(=-\frac{77}{40}\)
\(e,\frac{2}{3}+\frac{1}{3}\cdot\frac{-6}{10}\)
\(=\frac{2}{3}-\frac{1}{5}\)
\(=\frac{7}{15}\)