Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x}{2}=\frac{y}{3}\) \(\frac{y}{4}=\frac{z}{5}\)và x2-y2=16
Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{12}\)(1)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)(2)
Từ (1) và (2) => \(\frac{x}{4}=\frac{y}{12}\)
=> \(\frac{x}{4}=\frac{y}{12}\Rightarrow\frac{x^2}{16}=\frac{y^2}{154}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x^2}{16}=\frac{y^2}{154}=\frac{x^2-y^2}{16-154}=\frac{16}{-138}=\frac{8}{69}\)
Đến đây làm nốt
should a person làm sai rồi, cách làm thì đúng nhưng nhân sai thì phải, cẩn thận nha =)
\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}=>\frac{y}{12}=\frac{z}{15}\)
\(=>\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=>\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}\)
áp dụng t/c dãy tỉ sô bằng nhau ta có:
\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=\frac{16}{-80}=-\frac{1}{5}\)
\(x^2=\frac{1}{5}.64=\frac{64}{5}=>x=\sqrt{\frac{64}{5}}\)
tương tự y và z nha
\(a)\dfrac{y+z+1}{x}=\dfrac{z+x+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{y+z+x+x+z+2+x+y-3}{x+y+z}\)
\(=\dfrac{\left(x+y+z\right)+\left(x+y+z\right)+\left(1+2-3\right)}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
Lại có: \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
\(\Rightarrow2=\dfrac{1}{x+y+z}\Rightarrow2\left(x+y+z\right)=1\Rightarrow x+y+z=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y+z+1}{x}=2\\\dfrac{x+z+2}{y}=2\\\dfrac{x+y-3}{z}=2\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y+z+x+1=3x\\x+y+z+2=3y\\x+y+z-3=3z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}+1=3x\\\dfrac{1}{2}+2=3y\\\dfrac{1}{2}-3=3z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1+\dfrac{1}{2}}{3}\\y=\dfrac{\dfrac{1}{2}+2}{3}\\z=\dfrac{\dfrac{1}{2}-3}{3}\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=\dfrac{-5}{6}\end{matrix}\right.\)
Chúc bạn học tốt!
\(=>\frac{x}{6}=\frac{y}{10}=\frac{2x^2-y^2}{2\cdot6^2-10^2}=\frac{-28}{-28}=1\)\(1\)
\(=>\hept{\begin{cases}x=1\cdot6=6\\y=1\cdot10=10\end{cases}}\)
Giải:
Ta có: \(10x=6y\Rightarrow\frac{x}{6}=\frac{y}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{10}=k\Rightarrow x=6k,y=10k\)
Mà \(2x^2-y^2=-28\)
\(\Rightarrow2\left(6k\right)^2-\left(10k\right)^2=-28\)
\(\Rightarrow72k^2-100k^2=-28\)
\(\Rightarrow k^2.-28=-28\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k=\pm1\)
+) \(k=1\Rightarrow x=6;y=10\)
+) \(k=-1\Rightarrow x=-6;y=-10\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(6;10\right);\left(-6;-10\right)\)
f ) x + y = x . y = x : y
Ta có :
\(x+y=xy\Rightarrow x=xy-y=y\cdot\left(x-1\right)\\ \Rightarrow x:y=x-1\)
Mặt khác , x : y = x + y ( gt )
\(\Rightarrow x-1=x+y\\ \Rightarrow x-x=1+y\\ \Rightarrow1+y=0\\ \Rightarrow y=-1\)
\(+)x=\left(x-1\right)\cdot y\\ \Rightarrow x=\left(x-1\right)\cdot\left(-1\right)\\ \Rightarrow x=-x+1\\ \Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\)
Vậy x = \(\dfrac{1}{2},y=-1\)
Ta có : 2x+1 /5 = 3y-2/7 = 2x+3y -1 /6x
=> 2x+1+3y-2 / 5+7 = 2x+3y-1 /6x
=> 2x+3y-1 / 12 = 2x+3y-1 / 6x
=> 12 = 6x => x =2
a/ theo bài ra, ta có:
\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=x+y+z\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+1+z+x+1+x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=x+y+z\)
- nếu x+y+z = 0 => x = y= z = 0
- nếu x+y+z khác 0 => x+y+z = \(\frac{1}{2}\)
=> y + z = \(\frac{1}{2}\) - x
=> z + x = \(\frac{1}{2}\) - y
=> x + y = \(\frac{1}{2}\) - z
=> \(\frac{x}{\frac{1}{2}-x+1}=\frac{y}{\frac{1}{2}-y+1}=\frac{z}{\frac{1}{2}-z-2}=\frac{1}{2}\)
=> 2x = \(\frac{1}{2}\) - x + 1 => x = \(\frac{1}{2}\)
=> 2y = \(\frac{1}{2}-y+1\) => y = \(\frac{1}{2}\)
=> 2z = \(\frac{1}{2}-z-2\) => z = \(\frac{-1}{2}\)
vậy x = 0 hoặc 1/2
y = 0 hoặc 1/2
z = 0 hoặc -1/2
mk lm câu b bái 1 nha
Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\\=\frac{2x+3y-z-2-6+3}{9}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=\frac{45}{9}=5\)
Suy ra
x - 1 = 5 . 2 = 10
x = 10 + 1
→ x = 11
y - 2 = 3 . 5 = 15
y = 15 + 2
→ y = 17
z - 3 = 4 . 5 = 20
z = 20 + 3
→ z = 23