Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x}{-5}>0\)
\(\Rightarrow-5x>0\)
\(\Rightarrow5x< 0\)
\(\Rightarrow x< 0\)
\(\Rightarrow x\in(-1,-2,-3,...)\)
b) \(\frac{2x}{5}=0\)
\(\Rightarrow2x=0\)
\(\Rightarrow x=0\)
c) \(0< \frac{x}{1}< 1\)
\(\Rightarrow0< x< 1\) mà x\(\in z\)
\(\Rightarrow x\in\varnothing\)
d) \(\frac{3x}{6}=1\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
e) \(2< \frac{x}{3}< 4\)
\(\Rightarrow\)\(6< x< 12\)
\(x\in(7,8,9,10,11,12)\)
a) x-3=-3
x=0
b) 7+x=1
x=-6
c) /x/+3=4
/x/=1
=>x=1 hoặc x=-1
d) /x+2/=2
x+2=2 hoặc x+2=-2
x=0 x=-4
e) /x-1/=0
x-1=0
x=1
f) /x-1/=2
x-1=2 hoặc x-1=-2
x=3 x=-1
#Hoctot
ta có: \(\frac{84}{14}\)<3x<\(\frac{108}{9}\)
rút gọn cho 3 ta đc : 2<x<4
Vậy x cần tìm là 3
Ta có :
84/14<3x<108/9
Rút gọn các số trên ta được: 2<x<4=> x=3
Vậy x=3
(năm mới vui vẻ.........hihihihihihi........t..i..c..k n..h..a..)
a) \(15-5\left|x+4\right|=-12-3\)
\(\Leftrightarrow5\left|x+4\right|=30\)
\(\Leftrightarrow\left|x+4\right|=6\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=6\\x+4=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-10\end{cases}}\)
b) \(\left(4x-8\right)\left(7-x\right)=0\Leftrightarrow\orbr{\begin{cases}4x-8=0\\7-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}\)
c) \(\left(x^2-36\right)\left(x^2+5\right)=0\Rightarrow\left(x-6\right)\left(x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
d) \(-3\left(x+7\right)-11=2\left(x+5\right)\)
\(\Leftrightarrow-3x-32=2x+10\)
\(\Leftrightarrow5x=-42\Rightarrow x=-\frac{42}{5}\)
\(a,x-5⋮x+2\)
\(\Rightarrow x+2-7⋮x+2\)
\(\Rightarrow x+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
x + 2 = 1=> x = -1
x + 2 = -1 => x = -3
.... tương tự nhé ~
\(2x+3⋮x-5\)
\(\Rightarrow2x-10+7⋮x-5\)
\(\Rightarrow2\left(x-5\right)+7⋮x-5\)
\(\Rightarrow x-5\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
x - 5 = 1 => x = 6
....
vì 0<x,y,z\(\le\)1 nên (1-x)(1-y) >=0 <=> 1+xy >= x+y
<=> 1+z+xy >= x+y+z
<=> \(\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\left(1\right)\)
tương tự có \(\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\left(2\right);\frac{z}{1+x+xy}\le\frac{z}{x+y+z}\left(3\right)\)
cộng theo vế của (1), (2), (3) ta được
\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{x+y+z}{x+y+z}\le\frac{3}{x+y+z}\)
dấu "=" xảy ra khi x=y=z=1
x thuộc các số:{-4;-5;-6;...}