Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5^6+5^7+5^8
=5^6.(1+5+5^2)
=5^6.31 chia hết cho 31
7^6+7^5-7^4
=7^4.(7^2+7-1)
=7^4.55 chia hết cho 11
BÀI 2:
a) \(5^6+5^7+5^8=5^6\left(1+5+5^2\right)=5^6.31\) \(⋮\)\(31\)
b) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55\)\(⋮\)\(11\)
c) \(2^3+2^4+2^5=2^3.\left(1+2+2^2\right)=2^3.7\)\(⋮\)\(7\)
d) mk chỉnh đề
\(1+2+2^2+2^3+...+2^{59}\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{58}+2^{59}\right)\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{58}\left(1+2\right)\)
\(=\left(1+2\right)\left(1+2^2+...+2^{58}\right)\)
\(=3\left(1+2^2+...+2^{58}\right)\)\(⋮\)\(3\)
1) *Để 7x1y chia hết cho 2 và 5 thì y = 0 => 7x10
Do đó x = 0;1;2;3;4;5;6;7;8;9
2) Chia hết cho 45 là chia hết cho 5 và 9
*Để 3x59y chia hết cho 5 thì y = 5 ; 0 => 3x595 ; 3x590
*Để 3x595 ; 3x590 chia hết cho 9 thì x = 5 ; 1
Để 2x7y \(⋮\)5
=> y = 0 hoặc y = 5
Khi đó 2x7y = 2x70 ; 2x7y = 2x75
Để 2x70 \(⋮9\)
=> (2 + x + 7 + 0) \(⋮9\)
=> (x + 9) \(⋮9\)
=> \(x=0;x=9\left(\text{Vì }0\le x\le9\right)\)
Để 2x75 \(⋮9\)
=> (2 + x + 7 + 5) \(⋮9\)
=> (14 + x) \(⋮9\)
=> x = 4
Vậy các cặp số (x;y) thỏa mãn để 2x7y chia hết cho 9 và 5 là
(0 ; 0) ; (9 ; 0) ; (4 ; 5)
2) Để a689b \(⋮\)2
=> b = 0 ; b = 2 ; b = 4 ; b = 6 ; b = 8
Để a689b \(⋮\)5
=> b = 0 ; b = 5
Để a689b \(⋮\)2 ; 5
=> b = 0
Khi đó số mới là a6890
a6890 \(⋮\)3 <=> (a + 6 + 8 + 9 + 0) \(⋮\)3
=> (a + 23) \(⋮\)3
=> a = 1 ; a = 4 ; a = 7 (Vì 0 < a < 10)
Vì a6890 không chia hết cho 9
=> a = 1 ; a = 7
Vậy các cặp số (a ; b) thỏa mãn bài toán là (1 ; 0) ; (7 ; 0)
Câu 3 :
Để 43x28y \(⋮\)45
=> 43x28y \(⋮\)5 và 43x28y \(⋮\)9
+) 43x28y \(⋮\)5 khi y = 0 hoặc y = 5
Khi đó số mới là 43x280 hoặc 43x285
Để 43x280 \(⋮\)9
=> (4 + 3 + x + 2 + 8 + 0) \(⋮\)9
=> (17 + x) \(⋮\)9
=> x = 1 (Vì \(0\le x\le9\))
Vậy các cặp số (x;y) thỏa mãn bài toán là : (1 ; 0) ; (1 ; 5)
a) Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)
7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)
Vậy ...
b) Tương tự câu trên
c) Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
=> \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\) => \(\hept{\begin{cases}x=12\cdot\frac{3}{2}=18\\y=12\cdot\frac{4}{3}=16\\z=12\cdot\frac{5}{4}=15\end{cases}}\)
Vậy ....
d) HD : Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
(Sau đó áp dụng t/c của dãy tỉ số bằng nhau rồi làm tương tự như trên)
e) HD: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) => x = 2k; y = 3k; z = 5k (*)
Thay x = 2k; y = 3k ; z = 5k vào xyz = 810 => tìm k => thay k ngược lại vào (*)
Nếu ko hiểu cứ hỏi t
b,Sửa đề : \(\frac{x}{3}=\frac{y}{4};\frac{y}{2}=\frac{z}{5}\)\(2x-3y+z=6\)
Ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{6}=\frac{y}{8}\)(*)
\(\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{8}=\frac{z}{20}\)(**)
Từ (*);(**) \(\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{8}=\frac{z}{20}=\frac{2x-3y+z}{2.6-3.8+20}=\frac{49}{8}\)
\(x=36,75;y=49;z=122,5\)
cách làm
lấy3+2+4+3+2=14 mà 14 ko chia hết cho 3 nên ta =15 mà 15 không chia hết cho 2 nên ta có thể lấy 15=18 vậy suy ra là x= 18:3=6
ta có phép nhân lấy 5x9=45 vậy y = 5 hoặc 9
suy ra x=6; y=5
x=6 ;y=9
a) \(15-5\left|x+4\right|=-12-3\)
\(\Leftrightarrow5\left|x+4\right|=30\)
\(\Leftrightarrow\left|x+4\right|=6\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=6\\x+4=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-10\end{cases}}\)
b) \(\left(4x-8\right)\left(7-x\right)=0\Leftrightarrow\orbr{\begin{cases}4x-8=0\\7-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}\)
c) \(\left(x^2-36\right)\left(x^2+5\right)=0\Rightarrow\left(x-6\right)\left(x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
d) \(-3\left(x+7\right)-11=2\left(x+5\right)\)
\(\Leftrightarrow-3x-32=2x+10\)
\(\Leftrightarrow5x=-42\Rightarrow x=-\frac{42}{5}\)
\(a,x-5⋮x+2\)
\(\Rightarrow x+2-7⋮x+2\)
\(\Rightarrow x+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
x + 2 = 1=> x = -1
x + 2 = -1 => x = -3
.... tương tự nhé ~
\(2x+3⋮x-5\)
\(\Rightarrow2x-10+7⋮x-5\)
\(\Rightarrow2\left(x-5\right)+7⋮x-5\)
\(\Rightarrow x-5\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
x - 5 = 1 => x = 6
....