K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

Vì x + (x+1) + ..... +2002 + 2003 = 2003

=> x + (x+1) + ..... +2002 = 2003 - 2003

=> x + (x+1) + ..... +2002 = 0 

=> x = (-2002)

23 tháng 4 2017

x+(x+1)+...+2002+2003=2003

x+(x+1)+...+2002=2003-2003

(x+2002)+(x+1+2001)+...=0

(x+2002)*2002=0

suy ra x+2002=0

suy ra x= 2002

nho k cho minh voi nha

23 tháng 4 2017

cám ơn nha

1 tháng 4 2018

Ta có : 

\(\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}+35=2^5\)

\(\Leftrightarrow\)\(\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}=2^5-35\)

\(\Leftrightarrow\)\(\left(\frac{x+1}{2004}+1\right)+\left(\frac{x+2}{2003}+1\right)+\left(\frac{x+3}{2002}+1\right)=32-35+3\)

\(\Leftrightarrow\)\(\frac{x+2005}{2004}+\frac{x+2005}{2003}+\frac{x+2005}{2002}=-3+3\)

\(\Leftrightarrow\)\(\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\right)=0\)

Vì \(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\ne0\)

Nên \(x+2005=0\)

\(\Rightarrow\)\(x=-2005\)

Vậy \(x=-2005\)

Chúc bạn học tốt ~ 

1 tháng 4 2018

Ta có: \(\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}+35=2^5\)

\(\Rightarrow\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}=2^5-35\)

\(\Rightarrow\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}=-3\)

\(\Rightarrow\frac{x+1}{2004}+1+\frac{x+2}{2003}+1+\frac{x+3}{2002}+1=-3+3\)

\(\Rightarrow\frac{x+1+2004}{2004}+\frac{x+2+2003}{2003}+\frac{x+3+2002}{2002}=0\)

\(\Rightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}+\frac{x+2005}{2002}=0\)

\(\Rightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\right)=0\)

Vì \(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\ne0\)

Nên x + 2005 = 0

=> x                = -2005

Vậy x = -2005

16 tháng 7 2017

1a/ \(\left(15-x\right)+\left(x-12\right)=7-\left(-5+x\right)\)

=> \(\left(15-x\right)+\left(x-12\right)+\left(-5+x\right)=7\)

=> \(15-x+x-12-5+x=7\)

=> \(\left(15-12-5\right)-\left(x+x+x\right)=7\)

=> \(\left(15-12-5\right)-7=3x\)

=> \(3x=-2-7\)

=> \(3x=-9\)

=> \(x=\frac{-9}{3}=-3\)

b/ \(x-\left\{57-\left[42+\left(-23-x\right)\right]\right\}=13-\left\{47+\left[25-\left(32-x\right)\right]\right\}\)

=> \(x-57-42-23-x=13-47+25-32+x\)

=> \(x-x+x=13-47+25-32+57+42+23\)

=> \(x=\left(13+23\right)-\left(47+57\right)+\left(25+57\right)-\left(32+42\right)\)

=> \(x=36-104+82-74\)

=> \(x=-60\)

d/ \(\left(x-3\right)\left(2y+1\right)=7\)

Vì 7 là số nguyên tố nên ta có 2 trường hợp:

TH1: \(\hept{\begin{cases}x-3=1\\2y+1=7\end{cases}}\)=> \(\hept{\begin{cases}x=4\\y=3\end{cases}}\).

TH2: \(\hept{\begin{cases}x-3=7\\2y+1=1\end{cases}}\)=> \(\hept{\begin{cases}x=10\\y=0\end{cases}}\).

Các cặp (x, y) thoả mãn điều kiện: \(\left(4;3\right),\left(10;0\right)\).

26 tháng 3 2017

 \(\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}\) + 35 = \(^{2^5}\)                                                                                

\(\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}\)          = -3

\(\left(\frac{x+1}{2004}+1\right)+\left(\frac{x+2}{2003}+1\right)+\left(\frac{x+3}{2002}+1\right)\) = 0

\(\left(\frac{x+1}{2004}+\frac{2004}{2004}\right)+\left(\frac{x+2}{2003}+\frac{2003}{2003}\right)+\left(\frac{x+3}{2002}+\frac{2002}{2002}\right)\)= 0

\(\left(\frac{x+2005}{2004}\right)+\left(\frac{x+2005}{2003}\right)+\left(\frac{x+2005}{2002}\right)\)= 0

\(\left(x+2005\right).\left(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\right)\)           = 0

\(\left(x+2005\right)\)                                                               = 0 \(:\left(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\right)\)  

\(\left(x+2005\right)\)                                                               = 0

\(x\)                                                                                    = 0-2005

\(x\)                                                                                    = -2005

29 tháng 6 2015

\(\Leftrightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)

\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

\(\Leftrightarrow x+2004=0\)

\(\Leftrightarrow x=-2004\)

câu trả lời đúng đấy

2 tháng 4 2016

$\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}$x+42000 +x+32001 =x+22002 +x+12003 

$\Rightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)$⇒(x+42000 +1)+(x+32001 +1)=(x+22002 +1)+(x+12003 +1)

$\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}$⇒x+20042000 +x+20042001 =x+20042002 +x+20042003 

$\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0$⇒x+20042000 +x+20042001 −x+20042002 −x+20042003 =0

$\Rightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0$⇒(x+2004)(12000 +12001 −12002 −12003 )=0

$\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\Rightarrow x+2004=0$12000 +12001 −12002 −12003 ≠0⇒x+2004=0

=>x=0-2004

=>x=-2004

vậy x=-2004

Có đúng ko các bạn?

2 tháng 4 2016

hình như đây là toán lớp 7 thì phải