Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}+35=2^5\)
\(\Leftrightarrow\)\(\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}=2^5-35\)
\(\Leftrightarrow\)\(\left(\frac{x+1}{2004}+1\right)+\left(\frac{x+2}{2003}+1\right)+\left(\frac{x+3}{2002}+1\right)=32-35+3\)
\(\Leftrightarrow\)\(\frac{x+2005}{2004}+\frac{x+2005}{2003}+\frac{x+2005}{2002}=-3+3\)
\(\Leftrightarrow\)\(\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\right)=0\)
Vì \(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\ne0\)
Nên \(x+2005=0\)
\(\Rightarrow\)\(x=-2005\)
Vậy \(x=-2005\)
Chúc bạn học tốt ~
Ta có: \(\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}+35=2^5\)
\(\Rightarrow\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}=2^5-35\)
\(\Rightarrow\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}=-3\)
\(\Rightarrow\frac{x+1}{2004}+1+\frac{x+2}{2003}+1+\frac{x+3}{2002}+1=-3+3\)
\(\Rightarrow\frac{x+1+2004}{2004}+\frac{x+2+2003}{2003}+\frac{x+3+2002}{2002}=0\)
\(\Rightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}+\frac{x+2005}{2002}=0\)
\(\Rightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\right)=0\)
Vì \(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\ne0\)
Nên x + 2005 = 0
=> x = -2005
Vậy x = -2005
Ta có 3A= \(^{3^2+3^3+3^4+...+3^{100}}\)
3A-A=2A= (\(3^2+3^3+3^4+...+3^{100}\))-(\(3+3^2+3^3+...+3^{99}\))
2A= \(3^{100}-3\)
theo bài ra ta có
2A+3=\(3^n\)= \(3^{100}-3+3=3^n\)=\(^{3^{100}}\)\(\Rightarrow\)n=100
Ta có:
\(\frac{1\div2003+1\div2004-1\div2005}{5\div2003+5\div2004-5\div2005}\) - \(\frac{2\div2002+2\div2003-2\div2004}{3\div2002+3\div2003-3\div2004}\)
Đơn giản đi hết ta sẽ còn:
\(\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)
2.
Ta có:
Số khoảng cách của các số trong dãy là 23 = 8
=> Tổng của dãy dưới sẽ gấp 8 lần tổng dãy trên.
=> 3025 . 8 = 24200
kết quả là 2008 đấy bạn
nếu nhà bạn có máy tính thì chỉ cần bấm phương trình x thì sẽ ra kết quả thôi
\(\frac{x-1}{2007}+\frac{x-2}{2006}+\frac{x-3}{2005}=\frac{x-4}{2004}+\frac{x-5}{2003}+\frac{x-6}{2002}\)
=> \(\left(\frac{x-1}{2007}-1\right)+\left(\frac{x-2}{2006}-1\right)+\left(\frac{x-3}{2005}-1\right)=\left(\frac{x-4}{2004}-1\right)+\left(\frac{x-5}{2003}-1\right)+\left(\frac{x-6}{2002}-1\right)\)
=> \(\frac{x-1+2007}{2007}+\frac{x-2+2006}{2006}+\frac{x-3+2005}{2005}=\frac{x-4+2004}{2004}+\frac{x-5+2003}{2003}+\frac{x-6+2002}{2002}\)
=> \(\frac{x-2008}{2007}+\frac{x-2008}{2006}+\frac{x-2008}{2005}=\frac{x-2008}{2004}+\frac{x-2008}{2003}+\frac{x-2008}{2002}\)
=> \(\frac{x-2008}{2007}+\frac{x-2008}{2006}+\frac{x-2008}{2005}-\frac{x-2008}{2004}-\frac{x-2008}{2003}-\frac{x-2008}{2002}=0\)
=> \(\left(x-2008\right)\left(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)
Mà \(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\ne0\)
=> x - 2008 = 0 => x = 2008
Vậy x = 2008
Bạn chuyển về 1 vế sau đó trừ 1 vào mỗi phân thức ta được :
\(\left(x-2005\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}-\frac{1}{2005}\right)=0\)
Vì biểu thức bên phải khác 0 nên : \(x-2005=0\)=> \(x=2005\)
\(\frac{x-5}{2000}+\frac{x-4}{2001}+\frac{x-3}{2002}=\frac{x-2}{2003}+\frac{x-1}{2004}+\frac{x}{2005}\)
\(\Leftrightarrow\frac{x-2005}{2000}+\frac{x-2005}{2001}+\frac{x-2005}{2002}=\frac{x-2005}{2003}+\frac{x-2005}{2004}+\frac{x-2005}{2005}\)
\(\Leftrightarrow\left(x-2005\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}-\frac{1}{2005}\right)=0\)
<=> x - 2005 = 0
<=> x = 2005
Vậy ...............
a)\(\frac{x+32}{11}+\frac{x+23}{12}=\frac{x+38}{13}+\frac{x+27}{14}\)
\(\left(\frac{x-1}{11}+3\right)+\left(\frac{x-1}{12}+2\right)=\left(\frac{x-1}{13}+3\right)+\left(\frac{x-1}{14}+2\right)\)
\(\left(\frac{x-1}{11}+\frac{x-1}{12}\right)+\left(3+2\right)=\left(\frac{x-1}{13}+\frac{x-1}{14}\right)+\left(3+2\right)\)
\(\frac{x-1}{11}+\frac{x-1}{12}=\frac{x-1}{13}+\frac{x-1}{14}\)
\(\frac{x-1}{11}+\frac{x-1}{12}-\frac{x-1}{13}+\frac{x-1}{14}=0\)
\(\left(x-1\right)\left(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)
Vì \(\frac{1}{11}+\frac{1}{12}\ne\frac{1}{13}+\frac{1}{14}\)\(\Rightarrow\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\ne0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
\(\frac{x+5}{3}=\frac{y-7}{4}\)
áp dụng t\c của dãy tỉ số bằng nhau ta có :
\(\frac{x+5}{3}=\frac{y-7}{4}=\frac{x+5+y-7}{3+4}=\frac{23-2}{7}=\frac{21}{7}=3\)
\(\Rightarrow\hept{\begin{cases}x=3\cdot3-5=4\\y=3\cdot4+7=19\end{cases}}\)
đặt \(k=\frac{x+5}{3}=\frac{y-7}{4}\)
\(\Rightarrow\hept{\begin{cases}x=3k-5\\y=4k+7\end{cases}}\)
\(\Rightarrow x+y=3k-5+4k+7=7k+2=23\)
\(\Rightarrow k=\frac{23-2}{7}=3\)
\(\Rightarrow\hept{\begin{cases}x=4\\y=19\end{cases}}\)
các câu tiếp theo tương tự
Bạn tham khảo nhé
\(a)\) \(\frac{x-1}{2003}+\frac{x-2}{2002}+\frac{x-3}{2001}-3=0\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2003}-1\right)+\left(\frac{x-2}{2002}-1\right)+\left(\frac{x-3}{2001}-1\right)+\left(-3+3\right)=0\)
\(\Leftrightarrow\)\(\frac{x-2004}{2003}+\frac{x-2004}{2002}+\frac{x-2004}{2001}=0\)
\(\Leftrightarrow\)\(\left(x-2004\right)\left(\frac{1}{2003}+\frac{1}{2002}+\frac{1}{2001}\right)=0\)
Vì \(\frac{1}{2003}+\frac{1}{2002}+\frac{1}{2001}\ne0\)
\(\Rightarrow\)\(x-2004=0\)
\(\Rightarrow\)\(x=2004\)
Vậy \(x=2004\)
Chúc bạn học tốt ~
\(b)\) \(\frac{315-x}{101}+\frac{313-x}{103}+\frac{311-x}{105}+\frac{309-x}{107}=-4\)
\(\Leftrightarrow\)\(\left(\frac{315-x}{101}+1\right)+\left(\frac{313-x}{103}+1\right)+\left(\frac{311-x}{105}+1\right)+\left(\frac{309-x}{107}+1\right)=-4+4\)
\(\Leftrightarrow\)\(\frac{416-x}{101}+\frac{416-x}{103}+\frac{416-x}{105}+\frac{416-x}{107}=0\)
\(\Leftrightarrow\)\(\left(416-x\right)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)
Vì \(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\ne0\)
\(\Rightarrow\)\(416-x=0\)
\(\Rightarrow\)\(x=416\)
Vậy \(x=416\)
Chúc bạn học tốt ~
\(\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}\) + 35 = \(^{2^5}\)
\(\frac{x+1}{2004}+\frac{x+2}{2003}+\frac{x+3}{2002}\) = -3
\(\left(\frac{x+1}{2004}+1\right)+\left(\frac{x+2}{2003}+1\right)+\left(\frac{x+3}{2002}+1\right)\) = 0
\(\left(\frac{x+1}{2004}+\frac{2004}{2004}\right)+\left(\frac{x+2}{2003}+\frac{2003}{2003}\right)+\left(\frac{x+3}{2002}+\frac{2002}{2002}\right)\)= 0
\(\left(\frac{x+2005}{2004}\right)+\left(\frac{x+2005}{2003}\right)+\left(\frac{x+2005}{2002}\right)\)= 0
\(\left(x+2005\right).\left(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\right)\) = 0
\(\left(x+2005\right)\) = 0 \(:\left(\frac{1}{2004}+\frac{1}{2003}+\frac{1}{2002}\right)\)
\(\left(x+2005\right)\) = 0
\(x\) = 0-2005
\(x\) = -2005